Markt Markt Erlbach

- Landkreis Neustadt/Aisch - Bad Windsheim -

Antrag auf Erteilung einer wasserrechtlichen Erlaubnis

zum Einleiten von gesammeltem Niederschlagswasser aus den Ortsteilen Altziegenrück und Altselingsbach in das Gewässer Selingsbach

Erläuterungsbericht

Fassung vom 17.12.2024

Vorhabensträger:

Markt Markt Erlbach Neue Straße 16 91459 Markt Erlbach

Markt Erlbach, den 17.12.2024

Dr. Birgit Kreß

1. Bürgermeisterin

Markt Markt Taschendorf

Entwurfsverfasser:

Härtfelder Ingenieurtechnologien GmbH Eisenbahnstraße 1 91438 Bad Windsheim

Bad Windsheim, den 17.12.2024

Dipl.-Ing. (FH) Uwe Härtfelder

Geschäftsführer

Härtfelder Ingenieurtechnologien GmbH

INHALTSVERZEICHNIS

1	Vorhabensträger	2
2	Zweck des Vorhabens	2
3	Bestehende Verhältnisse und Randbedingungen 3.1 Allgemeines 3.2 Bestehende Abwasseranlagen 3.3 Bestehende Wasserversorgung 3.4 Gewässerverhältnisse 3.4.1 Selingsbach 3.5 Detailübersicht der einzelnen Einleitstellen 3.5.1 Altselingsbach 3.5.2 Altziegenrück	3 3 3 5
4	Art und Umfang der beantragten Gewässerbenutzung 4.1 Niederschlagswasserableitung 4.1.1 Hydraulische Kanalnetzberechnung 4.2 Gewässerbelastung 4.2.1 Qualitative Gewässerbelastung 4.2.2 Hydraulische Gewässerbelastung 4.2.3 Regenwasserrückhaltung	7 8 8
5	Auswirkungen des Vorhabens	.11
6	Rechtsverhältnisse	11
	nlage 1: Niederschlagshöhen und Niederschlagsspenden KOSTRA-DWD-2020	
	nlage 2: Flächenzusammenstellung der Einleitungsstellen nach DWA-A 102-2	
	nlage 4: Hydrodynamische Kanalnetzberechnung bestehender Regenwasserkanal	
	nlage 5: Flächenermittlung nach DWA-A 117	
Ar	nlage 6: Bemessung der Regenwasserrückhaltung nach DWA-A117	31
Ar	nlage 5: Zusammenstellung der Einleitungen	33

1 Vorhabensträger

Vorhabensträger ist der Markt Markt Erlbach, Landkreis Neustadt/Aisch – Bad Windsheim.

Markt Markt Erlbach Neue Straße 16 91459 Markt Erlbach

2 Zweck des Vorhabens

Die wasserrechtliche Erlaubnis zum Einleiten von Niederschlagswasser aus den Ortsteilen Altselingsbach und Altziegenrück in das Gewässer Selingsbach endet für den Markt Markt Erlbach zum 31.12.2024. Deshalb ist für das Einleiten gesammelten Niederschlagswassers ein Antrag auf Neuerteilung einer wasserrechtlichen Erlaubnis zu stellen. Dieser beinhaltet unter anderem die Überrechnung der Niederschlagswassereinleitungen nach dem Stand der Technik und ggf. eine Sanierungsplanung.

3 Bestehende Verhältnisse und Randbedingungen

3.1 Allgemeines

Abb. 1: Übersichtskarte Markt Erlbach (Quelle: BayernAtlas, bearbeitet)

Altselingsbach und Altziegenrück sind Teil der Marktgemeinde Markt Erlbach. Diese befindet sich im Südosten des Landkreises Neustadt/Aisch – Bad Windsheim in Mittelfranken. Die Lage der beiden Ortsteile ist in Abbildung 1 zu erkennen.

Für den betrachteten Bereich sind keine Überschwemmungsgebiete festgesetzt.

3.2 Bestehende Abwasseranlagen

Die Ortsteile Altselingsbach und Altziegenrück entwässern im Trennsystem. Anfallendes Schmutzwasser wird über Abwasserleitungen gesammelt und über Freispiegelkanäle zur Kläranlage Röschenmühle geleitet. Hier findet die Abwasserreinigung statt. Die Anlage wird im Belebtschlammverfahren mit Schwebekörpern betrieben.

Anfallendes Niederschlagswasser wird über den Regenwasserkanal getrennt gesammelt. Vor Einleitung in das Gewässer, wird das Niederschlagswasser in bestehenden Bodenfilteranlagen rückgehalten, gereinigt und gedrosselt ins Gewässer eingeleitet.

3.3 Bestehende Wasserversorgung

Die Wasserversorgung in Altselingsbach und Altziegenrück erfolgt durch den Zweckverband Markt Erlbacher Gruppe und die Dillenberggruppe.

3.4 Gewässerverhältnisse

Beide Einleitungen erfolgen in den Selingsbach. Dieser wird im Folgenden genauer beschreiben.

3.4.1 Selingsbach

-Allgemeines

Gewässerfolge: Selingsbach - Neuselingsbach - Zenn - Regnitz - Main

Der Selingsbach stellt ein Gewässer III. Ordnung dar. Er kann dem Gewässertyp 6K "Feinmaterialreiche, karbonatische Mittelgebirgsbäche des Keupers" zugeordnet werden.

-Niederschlagsgebiet

Das Einzugsgebiet bis zur ersten Einleitungsstelle in den Selingsbach ist etwa 8,17 km² groß.

-Abflüsse

Mithilfe des hydrologischen Atlas Deutschland (HAD) kann die mittlere jährliche Abflusshöhe für das Einzugsgebiet bestimmt werden. Diese liegt bei ca. 180 mm/a. Dies entspricht 5,7 l/s*km². Bei einem Einzugsgebiet von etwa 8,165 km² resultiert daraus ein MQ von 46,6 l/s.

-Flussbaulicher Zustand

Für den Selingsbach liegt eine Strukturkartierung vor. Er ist im Bereich der Einleitstellen als deutlich verändert einzustufen.

-Anforderungen infolge anderer Nutzungen

Andere Nutzungsformen (Badestellen, Entnahme von Trinkwasser) bestehen nicht. Demnach gibt es keine weiteren Anforderungen zu berücksichtigen.

-Gewässergüte

Ökologischer Zustand	2015	Aktuell	Chemischer Zustand	2015	Aktuell
Zustand (Z)/Potenzial (P) (gesamt)	Z3	Z3	Zustand (gesamt)	Nicht gut	Nicht gut
B: 1 : 1			D.W		
Biologische Qualitätskomponenten	2015	Aktuell	Differenzierte Angaben zum chemischen Zustand	2015	Aktuell
Phytoplankton	Nk	Nk	- ohne ubiquitäre Schadstoffe*	Gut	Gut
Makrophyten/Phytobenthos	3	3	- ohne Quecksilber und BDE	Nk	Nicht gut
Makrozoobenthos	2	2	* Die Bewertungen sind wegen Änd nicht direkt vergleichbar	erungen der V	/orgaben
Fischfauna	3	3	micht direkt vergieichbar		

Unterstützende Qualitätskomponenten	2015	Aktuell
Hydromorphologie		
Wasserhaushalt	Nbr	Nbr
Durchgängigkeit	Nbr	H3
Morphologie	Nbr	Nbr
Physikalisch-chemische Qualitätskomponenten		
Temperaturverhältnisse	Nbr	Nk
Sauerstoffhaushalt	Nbr	Ne
Salzgehalt	Nbr	Е
Versauerungszustand	Nk	Е
Nährstoffverhältnisse	Nbr	Ne

Nbr Nbr

emische
nenten

lältnisse Nbr Nk
nalt Nbr Ne

Prioritäre Stoffe mit Überschreitung der Umweltqualitätsnormen (UQN)

Quecksilber Summe 6-BDE (28,47,99,100,153,154)

Flussgebietsspezifische Stoffe mit Überschreitung der Umweltqualitätsnormen (UQN)

Abb. 2: Auszug aus der Gewässerstrukturkartierung der Zenn bis Einmündung Weihergraben mit allen Nebegewässern – Quelle: UmweltAtlas Bayern

Legende - Code	Beschreibung
1/Z1	Okologischer Zustand sehr gut
2 / Z2 / P2	Ökologischer Zustand gut/ökologisches Potenzial gut und besser
3 / Z3 / P3	Ökologischer Zustand/ökologisches Potenzial mäßig
4 / Z4 / P4	Ökologischer Zustand/ökologisches Potenzial unbefriedigend
5 / Z5 / P5	Ökologischer Zustand/ökologisches Potenzial schlecht
Nk	Nicht klassifiziert
E	Wert eingehalten
H1 / H2	Gut oder besser
Ne	Wert nicht eingehalten
H3	Schlechter als gut
Nbr	Untersuchung durchgeführt, nicht bewertungsrelevant
Gut	Chemischer Zustand gut
Nicht gut	Chemischer Zustand nicht gut

Abb. 3: Legende für die Gewässerstrukturkartierung - Quelle: UmweltAtlas Bayern

3.5 Detailübersicht der einzelnen Einleitstellen

3.5.1 Altselingsbach

Im vorliegenden Wasserrechtsantrag ist die folgende Einleitungsstelle in Altselingsbach zu betrachten:

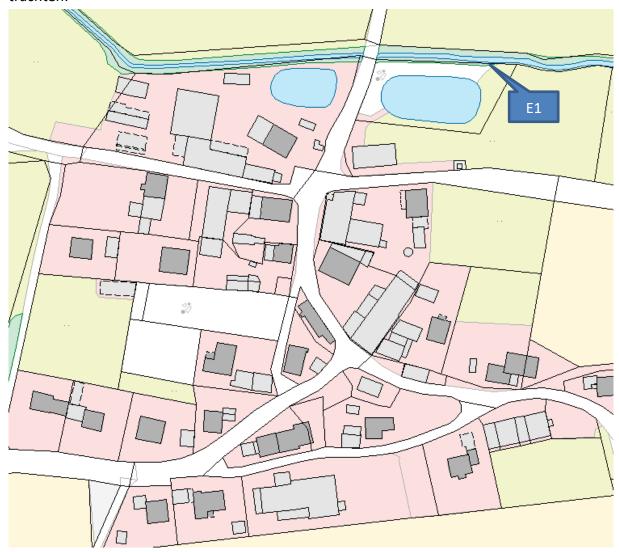


Abb. 4: Übersicht der Einleitungsstelle in Altselingsbach (Quelle: BayernAtlas, bearbeitet)

Angaben zur Einleitungsstelle:

Einleitungs- stelle	Gewässer	Flur-Nr.	Gemarkung	Ostwert	Nordwert
E1	Selingsbach	225	Altselinsbach	32617499,36	5481584,07

Die Einleitstelle weist keine Auskolkungen auf. Es sind keine Unterspülungen oder Böschungsabbrüche erkennbar. Im Zuge des Gewässerunterhalts ist auf den regelmäßigen Schnitt des Bewuchses zu achten.

3.5.2 Altziegenrück

Im vorliegenden Wasserrechtsantrag ist die folgende Einleitungsstelle für Altziegenrück zu betrachten:

Abb. 5: Übersicht der Einleitungsstelle in Altziegenrück (Quelle: BayernAtlas, bearbeitet)

Angaben zur Einleitungsstelle:

Einleitungs- stelle	Gewässer	Flur-Nr.	Gemarkung	Ostwert	Nordwert
E1	Selingsbach	388	Altselinsbach	32617838,40	5481779,24

Die Einleitstelle weist keine Auskolkungen auf. Es sind keine Unterspülungen oder Böschungsabbrüche erkennbar.

4 Art und Umfang der beantragten Gewässerbenutzung

Die Erlaubnis für die Niederschlagswassereinleitung aus den Ortsteilen Altselingsbach und Altziegenrück läuft aus. Mittels einer neuen Beurteilung und einer Überrechnung des Kanalnetzes wird der Stand der Technik und die maximal zulässige Überstauhäufigkeit nachgewiesen. Die Festlegung der Einzugsgebiete sowie Bestimmung der Oberflächen-/Befestigungsart und deren Nutzung erfolgte durch die Auswertung von digitalen Orthophotos (DOP), einer digitalen Flurkarte (DFK) und eines digitalen Geländemodells (DGM). Die Überstauhäufigkeit des bestehenden Regenwasserkanalnetzes wurde hydrodynamisch mit einem 1-jährlichen Euler-Regen Typ II der Dauer D = 60 Minuten nachgewiesen.

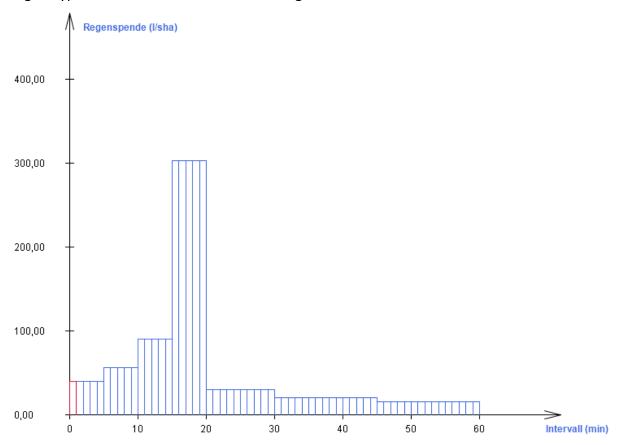


Abb. 6: Intensitätsverlauf Euler Regen Typ II, T=1, D=60

4.1 Niederschlagswasserableitung

Die Niederschlagswassererfassung erfolgt in den betrachteten Ortsteilen im Trennsystem. Anfallendes Niederschlagswasser wird in Regenwasserkanälen DN 300 bis DN 700 im Freigefälle zum Gewässer geleitet. Vor der gedrosselten Einleitung ins Gewässer erfolgt eine Reinigung über Bodenfilter und Rückhaltung über Regenrückhalteanlagen.

4.1.1 Hydraulische Kanalnetzberechnung

Der Nachweis der hydraulischen Leistungsfähigkeit des Kanalnetzes erfolgt über ein hydrodynamisches Modell. Als Niederschlagsereignis wurde ein Euler Typ II Regen verwendet. Die

Schutzkategorie der vorliegenden Gebiete kann gemäß DWA A 118 (2024) als gering eingestuft werden. Demnach ergibt sich eine Überstauhäufigkeit im Bestand von einmal in 1 Jahren. Die längste maßgebende Fließzeit im Kanal beträgt 8 min. Gemäß DWA A 118 (2024) wird eine Mindestregendauer von 60 min vorgegeben. Zum Nachweis wird ein 60 min Euler Regen Typ II mit einer Wiederkehrzeit von 1 verwendet. Des Weiteren wird eine betriebliche Rauheit k_b= 1,50 angenommen. Die Simulation zeigt, dass es während des Modellregens zu keinerlei Überstau im Kanalnetz kommt. Die Überstauhäufigkeit ist somit nachgewiesen. Des Weiteren sind keine Überflutungen aus der Vergangenheit bekannt. Dies stützt das Berechnungsergebnis. Ein detailliertes Protokoll der Kanalnetzberechnung ist dem Anhang zu entnehmen.

4.2 Gewässerbelastung

4.2.1 Qualitative Gewässerbelastung

Bei der qualitativen Gewässerbelastung steht das Schutzbedürfnis des Grundwassers bzw. des oberirdischen Gewässers im Vordergrund. Überschreitet das eingeleitete Regenwasser die zulässigen Belastungen, muss eine Reinigung erfolgen. Die emissionsbezogene Bewertung der Regenwetterabflüsse erfolgt nach *DWA-A 102-2*. Anhand der Bebauung und Nutzungsart der zu entwässernden Flächen werden die Einzugsgebiete in drei verschiedene Belastungskategorien eingeteilt. Die Dachflächen (D), die befestigten Hof- und Wegeflächen (VW1) aus den Privatgrundstücken sowie die Wohnstraßen (V1) können der Belastungskategorie I zugeordnet werden. Folglich fallen in den betrachteten Gebieten nur leicht belastete Flächen an. Demnach ist keine Behandlung des anfallenden Niederschlagswassers notwendig. Stärkere Belastungen sind nicht vorfindbar.

Die bestehenden Bodenfilter stellen Regenwasserbehandlungsanlagen dar. Aufgrund der fehlenden Notwendigkeit einer Regenwasserreinigung wird auf einen weiteren Nachweis der Bodenfilter verzichtet.

4.2.2 Hydraulische Gewässerbelastung

Infolge der Versieglung von Flächen und den damit verbundenen erhöhten Abflussspitzen, kann es zu einer Vergrößerung der Hochwasserspitzen in Oberflächengewässern kommen. Zur Verringerung dieser unerwünschten Auswirkungen ist der Regenabfluss vor der Einleitung in das Gewässer i. d. R. zu drosseln und über geeignete Maßnahmen zwischenzuspeichern.

An beiden Standorten sind Bodenfilter vorzufinden. Diese fungieren durch Einstau auch als Regenrückhaltebecken. Durch eine Abflussdrosselung staut sich das Regenwasser im Stauraum über der Filterschicht auf und wird zurückgehalten.

Der Selingsbach kann nach DWA M153 dem Gewässertyp "kleiner Flachlandbach" zugeordnet werden. Diesem Gewässertyp wird eine zulässige Drosselabflussspende q_r = 15 l/s*ha zugeschrieben.

Somit ergeben sich für die zwei Rückhaltungen folgende maßgebliche Drosselabflüsse:

Tab. 1: Drosselabflüsse

Ort	A _{E,k} [ha]	A _u [ha]	Q _{Dr} [l/s]	Q _{Dr} (Bescheid)[I/s]
Altselingsbach	6,23	2,92	43,8	35
Altziegenrück	9,92	4,23	63,5	60

Für die Ermittlung des erforderlichen Rückhaltevolumens werden die im alten Bescheid vorgegebenen Drosselabflüsse beibehalten. Eine Erhöhung der Drosselabflüsse ist nicht notwendig.

4.2.3 Regenwasserrückhaltung

Der Nachweis des benötigten Rückhaltevolumens erfolgt nach dem einfachen Verfahren gemäß DWA Arbeitsblatt A117. Als Regendaten werden die aktuellen KOSTRA 2020 Daten für Altselingsbach/Altziegenrück verwendet. Die beiden Standorte befinden sich im selben Rasterfeld.

Die Berechnung ergibt die folgenden Regenrückhaltevolumina:

Tab. 2.: erforderliches Regenrückhaltevolumen

Ort	A _u [ha]	Q _{Dr} [I/s]	V _{erf} [m ³]
Altselingsbach	2,916	35	538
Altziegenrück	4,23	60	970

Gefährdungsbeurteilung

Altselingsbach

Das Regenrückhaltebecken befindet sich am nördlichen Rand der Siedlungsstruktur. Das Gelände fällt in Richtung Nordost zum Gewässer hin ab. Das vorhandene Rückhaltevolumen wurde für eine Wiederkehrzeit T=2 nachgewiesen.

Im Falle eines Beckenüberstaus würde das Niederschlagswasser über eine Dammscharte direkt in den Selingsbach abfließen. Umliegende Bebauung wird durch die Notentlastung nicht beeinträchtigt.

<u>Altziegenrück</u>

Das Regenrückhaltebecken befindet sich westlich von Altziegenrück inmitten von landwirtschaftlich genutzten Flächen. Das vorhandene Rückhaltevolumen wurde für eine Wiederkehrzeit T=5 nachgewiesen.

Im Falle eines Beckenüberstaus würde das Niederschlagswasser über die Dammkrone breitflächig in die umliegende Flur und den Selingsbach abfließen. Es ist keine umliegende Infrastruktur vorhanden, welche beschädigt werden könnte.

Konstruktive Gestaltung der Anlagen

Der erforderliche Rückhalteraum wird über einstaubaren Freiraum oberhalb des Bodenfilters generiert. An beiden Beckenstandorten ist das erforderliche Rückhaltevolumen vorhanden.

Die Rückhalteanlagen sind als Erdbecken mit einer Böschungsneigung von 1 : 2 ausgeführt. Die Bauwerke können wie folgt charakterisiert werden:

Tab. 3: Technische Daten RRB Altselingsbach

RRB	Technische Daten
Einzugsgebiet A _{ges}	6,23 ha
Undurchlässige Fläche A _u	2,29 ha
V	538 m³
Sohle	339,40 m ü.NHN
Dammkrone	340,6 m ü.NHN
WSP (V _N)	340,24 m ü.NHN
Fläche Aufstau	800 m²
Freibord	0,35 m
Q _{Dr}	35 l/s
Q _{max}	754 l/s
Notüberlauf	Dammscharte, 340,27 m ü.NHN
Q _{Notüberlauf}	> 754 l/s
Weiterführender Kanal	DN 250 zum Vorfluter

Tab. 4: Technische Daten RRB Altziegenrück

RRB	Technische Daten
Einzugsgebiet A _{ges}	9,92 ha
Undurchlässige Fläche A _u	4,23 ha
V	970 m³
Sohle	338,45 m ü.NHN
Dammkrone	340 m ü.NHN

WSP (V _N)	339,55 m ü.NHN
Fläche Aufstau	1083 m²
Freibord	0,45 m
Q _{Dr}	60 l/s
Q _{max}	754 l/s
Notüberlauf	-
QNotüberlauf	> 1166 l/s
Weiterführender Kanal	DN 250 zum Vorfluter

5 Auswirkungen des Vorhabens

Es sind keine negativen Veränderungen in Bezug auf das Abflussgeschehen zu erwarten, da der Bestand nicht verändert wird.

Die Berechnungen zur qualitativen Gewässerbelastung zeigen, dass keine Anlagen zur Regenwasserreinigung notwendig sind.

Der rechnerische Überstaunachweis zeigt, dass es während des betrachteten Starkregenereignisses zu keinerlei Gefährdung der Anlieger kommt. Dies wird durch das Fehlen von kritischen Ereignissen aus der Vergangenheit bestätigt.

6 Rechtsverhältnisse

Durch die gezielte Sammlung und Ableitung des Niederschlagswassers findet der Gemeingebrauch nach § 25 WHG i.V.m. Art. 18 Abs. 1 Nr. 2 BayWG für diese Maßnahme keine Anwendung. Daher ist für die Entwässerung des Niederschlagswassers ein wasserrechtliches Genehmigungsverfahren beim Landratsamt Neustadt a. d. Aisch-Bad Windsheim erforderlich.

Eigentümer und Träger der Unterhaltungslast der Abwasseranlage ist der Markt Erlhach

Für die Maßnahme ist ein Wasserrechtsverfahren durchzuführen.

Aufgestellt:

Härtfelder Ingenieurtechnologien GmbH Fechtwangen – Bad Windsheim

Anlagen

Anlage 1: Niederschlagshöhen und Niederschlagsspenden KOSTRA-DWD-2020

Altseelingsbach, Altziegenruck

Anlage 2: Flächenzusammenstellung der Einleitungsstellen nach DWA-A 102-2

Hinsichtlich des erhöhten Genauigkeitsanspruchs wurde eine differenzierte Flächenermittlung nach Flächentyp und Befestigungsart durchgeführt. Die genauere Datengrundlage soll zu einer zutreffenderen Bemessung der Anlagen und somit zu einer größeren Wirtschaftlichkeit bei Bau und Betrieb führen. Als Datengrundlage dienten die Digitale Flurkarte (DFK), Digitale Orthophotos (DOP) sowie ein Digitales Geländemodell (DGM).

Die Bewertung erfolgt anhand der Zuordnung der einzelnen Nutzflächen in vorgegebene Flächentypen.

Fallen Flächen der Belastungskategorien II oder III an, ist eine partielle Behandlung des Regenwassers notwendig, da die zulässige Belastung überschritten wird.

Im Folgenden sind die Einzelnen Einzugsgebiete gemäß A 102 kategorisiert und bilanziert. Die Lagepläne der Einzelnen Ortsteile mit entsprechender Flächenermittlung sind dem Anhang zu entnehmen.

1. Altselingsbach

In Altselingsbach fallen nur Flächen der Belastungskategorie I an. Die Verkehrsflächen (V) der Dorfstraße können aufgrund der geringen Frequentierung der Belastungskategorie I zugeordnet werden. Die Dachflächen (D), sowie Hof und Wegeflächen (VW) können ebenfalls als gering belastet eingestuft werden. Da nur gering belastete Flächen vorhanden sind, ist keine Regenwasserbehandlung erforderlich.

	Flächentyp	Fläche A _{b,a}		davon	
	Flachentyp	Flacile A _{b,a}	Kategorie I	Kategorie II	Kategorie III
	Dachflächen	1,38 ha	1,38 ha		
pu	Verkehrsflächen	1,11 ha	1,11 ha		
Bestand	Hof- und Wegeflächen	0,76 ha	0,76 ha		
Be	Betriebsflächen	0,00 ha			
	Sonstige Flächen mit besonderer Belastung	0,00 ha			
	Dachflächen	0,13 ha	0,13 ha		
ose	Verkehrsflächen	0,00 ha			
Prognose	Hof- und Wegeflächen	0,04 ha	0,04 ha		
Pro	Betriebsflächen	0,00 ha			
	Sonstige Flächen mit besonderer Belastung	0,00 ha			
	Summenwerte	3,42 ha	3,42 ha	-	-
	Anteile in Prozent	100%	100,0%	-	-

- 14 -

2. Altziegenrück

In Altziegenrück fallen nur Flächen der Belastungskategorie I an. Die Verkehrsflächen (V) der Dorfstraße können aufgrund der geringen Frequentierung der Belastungskategorie I zugeordnet werden. Die Dachflächen (D), sowie Hof und Wegeflächen (VW) können ebenfalls als gering belastet eingestuft werden. Da nur gering belastete Flächen vorhanden sind, ist keine Regenwasserbehandlung erforderlich.

	Eläahantus	Fläche A _{b,a}	davon					
	Flächentyp	Flactie A _{b,a}	Kategorie I	Kategorie II	Kategorie III			
	Dachflächen	1,90 ha	1,90 ha					
힏	Verkehrsflächen	0,85 ha	0,85 ha					
Bestand	Hof- und Wegeflächen	1,43 ha	1,43 ha					
Be	Betriebsflächen	0,17 ha	0,17 ha					
	Sonstige Flächen mit besonderer Belastung	0,00 ha						
	Dachflächen	0,11 ha	0,11 ha					
ose	Verkehrsflächen	0,00 ha						
Prognose	Hof- und Wegeflächen	0,04 ha	0,04 ha					
Pro	Betriebsflächen	0,00 ha						
	Sonstige Flächen mit besonderer Belastung	0,00 ha						
	Summenwerte	4,50 ha	4,50 ha	-	-			
	Anteile in Prozent	100%	100,0%	-	-			

Anlage 4: Hydrodynamische Kanalnetzberechnung bestehender Regenwasserkanal

Mit einem Einzelmodellregen Euler Typ II, T=1, D=60

Programm: Rehm / Hykas Datum: 18.12.2024

Härtfelder Ingenieurtechnologien GmbH * Sebastian-Münster-Straße 6 * 91438 Bad Windsheim

Projekt:

Netzteil: Gesamtnetz

Instationäre Berechnung

Berechnung vom: 18.12.2024 Hykas-Version: 13.1.73

Berechnungsparameter

Netzteil: Gesamtnetz
Kanalsystem Regendauer + 120 Minuten
Startzeitpunkt der Berechnung: 14.12.2024 11:27

Lösungsansatz: Implizit (Dynamisch) mit angep. Länge

Haltungen angepasst mit Iterationsintervall: 1,00 Sekunden
Berechnet mit Iterationsintervall: 1,00 Sekunden

Berechnung mit variabler Schrittweite

Sicherheitsfaktor: 75,0 %
Gewählte Höchstanzahl Iterationen: 4
Durchschnittliche Anzahl Iterationen pro Zeitschritt: 2

Konvergenzkriterium: 0,00164 m

Minimal verwendeter Zeitschritt: 0,24 Sekunden
Durchschnittlich verwendeter Zeitschritt: 1,00 Sekunden
Maximal verwendeter Zeitschritt: 1,00 Sekunden

Minimale Schachtoberfläche:1,17 m²Minimales Rohrgefälle:0,0001 %

Trägheitsterme beibehalten

Erkenne schießenden Abfluss:

am Gefälle und an der Froudezahl
Zwischenspeicherung überlaufender Wassermengen:

Nein

Relaxationsfaktor: 0,50
Wasserspiegelvariante: Ohne Variante
Mindestvolumen: 1,00 m³
Min. Überstaudauer: 20,00 Sekunden

Bezugsniveau: -0,00 m

Oberflächenabflussmodell: Grenzwertmethode

mit linearer Speicherkaskade

Verlustansätze für undurchlässige und durchlässige Flächen:

Verdunstungsverlust: 1,4 l/s.ha

undurchlässige Fläche durchlässige Fläche

Max. Benetzungsverlust: 0,5 mm 3,0 mm

Max. Muldenverlust

Neigungsgruppe 1 2,0 mm 3,5 mm

Neigungsgruppe 2 1,5 mm Neigungsgruppe 3 1,0 mm

Seite 1 von 14

Härtfelder Ingenieurtechnologien GmbH * Sebastian-Münster-Straße 6 * 91438 Bad Windsheim

Projekt:

Netzteil: Gesamtnetz

Neigungsgruppe 4 0,5 mm Neigungsgruppe 5 0,5 mm

Anteil der abflusswirksamen Fläche

zu Beginn der Muldenauffüllung: 25,0 % 0,0 % am Ende der Muldenauffüllung: 85,0 % 50,0 %

<u>Bemerkungen</u>

v* = schießender Abfluss BA = Beschleunigter Abfluss

UE = Überlauf, Wasser tritt am Schachtdeckel aus X.XX = Wasserspiegel liegt um X.XX m über Scheitel

Seite 2 von 14

Härtfelder Ingenieurtechnologien GmbH * Sebastian-Münster-Straße 6 * 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

Netzstatistik

Anzahl der überrechneten Haltungen:	44
Bauwerke	
Freie Auslässe:	2
Grund-/Seitenauslässe:	0
Wehre:	0
Pumpen:	0
Speicherschächte:	0
Regler:	0
Anzahl Bauwerke insgesamt:	2

Verwendete druckdichte Schächte:

2101AZR20

Verwendete Profilarten:

0 Kreisprofil 2:2

Angewandte Regeln

Es wurden keine Regeln bei der Berechnung angewandt

Verwendete Regenereignisse für eine Einzelberechnung (T=1)

Station	Regenbezeichnung	Niederschlagssumme (mm)
RS1	Euler II, D=60, T=1	16,10

Seite 3 von 14

Härtfelder Ingenieurtechnologien GmbH * Sebastian-Münster-Straße 6 * 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

Volumenbilanz

	0,91 m³
	0,00 m ³
	969,43 m³
0,00 m³	
0,00 m ³	
0,00 m³	
970,45 m³	
0,00 m³	
	970,45 m³ 0,00 m³ 0,00 m³

Volumenfehler: 0,01 % Anfangsvolumen nach Trockenwetterberechnung im Netz: 0,00 m³

Überstaute Schächte

Keine überstauten Schächte vorhanden

Seite 4 von 14

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

Ein- bzw. rückgestaute Schächte

Schacht	Straßen- bezeichnung	Dauer des Ein- / Rückstaus Minuten	Max. Höhe über Rohrscheitel m	Min. Abstich auf Deckel m
110ASR14	——————————————————————————————————————	5,10	0,97	0,584
110ASR15	_	5,27	0,77	1,157
110ASR17	-	1,62	0,05	1,376

Seite 5 von 14

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

<u>Auslässe</u>

	Mittlerer Abfluss	Maximaler Abfluss	Gesamtvolumen
Auslass	I/s	l/s	m³
110ASR13	38,61	555,96	403,621
210AUS02	53,33	662,18	565,795
Summe:			969,416

Seite 6 von 14

Härtfelder Ingenieurtechnologien GmbH * Sebastian-Münster-Straße 6 * 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

Hydraulische Berechnung

100	8	33									Blatt 1 A
Haltung	Straßen-	Von	Bis	Anzahl	Ges.fläche	Schmutz-	Schmutz-	Max.	Max.	Max.	Max.
	bezeichnung	Schacht	Schacht	zugeord. EZG	zugeord. EZG	wasser	wasser Summe	Misch- wasser	Misch- wasser	Misch- wasser	Misch- wasser
				LZG	LZG	Qh+Qf	Qs	Qmax	Zeit	h	Vassci
Nr.		Nr.	Nr.			I/s	l/s	I/s	min	m	m/s
210AZR01	_	210AZR01	210AZR02	7	1,2847	0,00	0,00	40,43	22,22	0,18	0,92
210AZR02	 /	210AZR02	210AZR03	4	1,0571	0,00	0,00	85,36	23,11	0,22	1,53
210AZR03	 -	210AZR03	210AZR04	2	0,3791	0,00	0,00	111,74	22,18	0,28	1,19
210AZR04	_	210AZR04	210AZR05	3	0,3965	0,00	0,00	131,72	22,47	0,35	0,89
210AZR05		210AZR05	210AZR06	4	1,1108	0,00	0,00	258,04	21,57	0,40	1,54
210AZR06	-	210AZR06	210AZR07	3	0,5279	0,00	0,00	297,99	21,93	0,42	1,42
210AZR07	-	210AZR07	210AZR08	4	0,8062	0,00	0,00	375,42	21,92	0,43	1,71
210AZR08	_	210AZR08	210AZR09	4	0,6690	0,00	0,00	440,18	21,92	0,33	2,72
210AZR09	_	210AZR09	210AZR10	4	0,2284	0,00	0,00	452,28	21,96	0,23	4,41
210AZR10	_	210AZR10	210AZR11	1	0,0027	0,00	0,00	452,45	22,04	0,32	2,98
210AZR20		210AZR20	210AZR21	7	1,6892	0,00	0,00	94,78	22,10	0,24	1,23
210AZR21	-	210AZR21	210AZR21a	4	0,6138	0,00	0,00	124,15	22,70	0,27	1,17
210AZR21a	_	210AZR21a	210AZR22	2	0,1625	0,00	0,00	139,81	22,80	0,30	1,14
210AZR22	_	210AZR22	210AZR23	3	0,3944	0,00	0,00	168,85	22,55	0,35	1,17
210AZR23	_	210AZR23	210AZR11	1	0,0044	0,00	0,00	171,10	22,92	0,38	0,90
210AZR11	_	210AZR11	210AZR12	2	0,1206	0,00	0,00	630,20	22,25	0,42	2,64
210AZR12	_	210AZR12	210AZR13	3	0,4344	0,00	0,00	653,53	22,38	0,35	3,45
210AZR13		210AZR13	210AZR14	2	0,1655	0,00	0,00	666,31	22,41	0,24	6,15
210AZR14		210AZR14	210AZR14a	0	0,0000	0,00	0,00	666,18	22,42	0,23	6,59
210AZR14a	(<u></u>)	210AZR14a	210AZR15	o	0,0000	0,00	0,00	666,11	22,50	0,25	5,89
210AZR15		210AZR15	210AZR16	0	0,0000	0,00	0,00	665,20	22,69	0,26	10,27
210AZR16		210AZR16	210AZR17	0	0,0000	0,00	0,00	665,35	22,75	0,25	8,11
210AZR17		210AZR17	210Fiktiv	0	0,0000	0,00	0,00	664,85	22,86	0,26	7,76
210Fiktiv		210Fiktiv	210AZR18	0	0,0000	0,00	0,00	663,81	23,03	0,28	5,91
210AZR18_	<u></u>	210AZR18	2101AZR20	0	0,0000	0,00	0,00	662,17	23,26	0,31	5,22
1		210/21(10	2101721020		0,0000	0,00	0,00	002,17	20,20	0,01	0,22
2101AZR20	-	2101AZR20	210AUS02	0	0,0000	0,00	0,00	662,18	23,37	0,32	4,25
110ASR01	-	110ASR01	110ASR02	3	1,4059	0,00	0,00	58,75	21,01	0,11	2,56
110ASR02	_	110ASR02	110ASR04a	3	0,5356	0,00	0,00	106,78	20,14	0,12	3,84
110ASR04a	_	110ASR04a	110ASR04	3	0,3279	0,00	0,00	126,71	20,24	0,13	4,13
110ASR04	_	110ASR04	110ASR05	3	0,1067	0,00	0,00	137,15	20,27	0,14	4,16
110ASR05	_	110ASR05	110ASR06	1	0,0082	0,00	0,00	138,63	20,32	0,18	3,06
110ASR14	-	110ASR14	110ASR15	4	1,1717	0,00	0,00	125,76	21,62	0,30	1,78
110ASR15	-	110ASR15	110ASR17	5	0,6113	0,00	0,00	173,77	21,47	0,30	2,46
110ASR17	-	110ASR17	110ASR17b	3	0,1405	0,00	0,00	190,07	21,36	0,28	2,79
110ASR17b	_	110ASR17b	110ASR06	1	0,0049	0,00	0,00	190,82	21,42	0,21	3,64
110ASR06	_	110ASR06	110ASR08	4	0,1716	0,00	0,00	342,50	20,70	0,22	4,84
110ASR08		110ASR08	110ASR08a	3	0,2676	0,00	0,00	375,84	20,66	0,23	5,08
110ASR08a		110ASR08a	110ASR09	3	0,2998	0,00	0,00	417,61	20,55	0,25	5,16
110ASR19	_	110ASR19	110ASR09	5	0,9275	0,00	0,00	106,76	20,30	0,25	1,73
110ASR09		110ASR09	110ASR010	o	0,0000	0,00	0,00	523,53	20,60	0,28	5,59
110ASR03	_	110ASR03	110ASR21	4	0,2020	0,00	0,00	26,32	20,11	0,19	0,54
110ASR21	_	110ASR21	110ASR010	1	0,0080	0,00	0,00	27,08	21,19	0,27	0,41
	1	1	1	ı il	,	-,50				_,_,	

- 22 -

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

Blat	+ 2	Δ

2											Didtt E / t
Haltung	Straßen-	Von	Bis	Anzahl	Ges.fläche	Schmutz-	Schmutz-	Max.	Max.	Max.	Max.
100000000000000000000000000000000000000	bezeichnung	Schacht	Schacht	zugeord.	zugeord.	wasser	wasser	Misch-	Misch-	Misch-	Misch-
	965			EZG	EZG		Summe	wasser	wasser	wasser	wasser
						Qh+Qf	Qs	Qmax	Zeit	h	v
Nr.		Nr.	Nr.			l/s	Vs.	l/s	min	m	m/s
110ASR010	_	110ASR010	110ASR11	2	0,0571	0,00	0,00	555,23	20,69	0,31	5,29
110ASR11	-	110ASR11	110ASR13	1	0,0031	0,00	0,00	555,96	20,67	0,32	4,18

Seite 8 von 14

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

Hydraulische Berechnung

																	Bla	t 1 B
Haltung	Rohr-	Sohl-	Profil- art	Profil- Nenn-	kb- Wert	Sohl- höhe	Sohl- höhe	Deckel- höhe	Wsp höhe	vvoll	Qvoll	TW	TW	Max. Wsp	Max. Wsp.	Max. Wsp.	Max. Wsp	Bel. grd.
	länge	ge- fälle	an	weite	vvert	oben	unten	oben	oben					vvsp	wsp.	wsp.	wsp	gra.
Nie	میں	0.00		DA:							0	v	h	v	Q	Zeit	h	0,
Nr. 210AZR01	50,08	0/00 9,98	0	DN 300	mm 1,50	m+NN 411,93	m+NN 411,43	m+NN 413,59	m+NN 412,07	m/s 1,38	l/s 97,9	m/s 0,00	0,00	m/s 0,91	I/s 40,18	min 22,24	0,14	41
210AZR02	53,53	10,09	0	300	1,50	411,43	410,89	414,06	411,65	1,39	98,4	0,00	0,00	1,48	84,12	22,86	0,14	87
210AZR03	31,27	9,91	0	400	1,50	410,89	410,58	413,38	411,12	1,66	209,1	0,00	0,00	1,18	111,19	22,01	0,23	53
210AZR04	26,73	4,49	0	500	1,50	410,58	410,46	412,31	410,91	1,29	253,4	0,00	0.00	0.83	126,72	21,72	0,33	52
210AZR05	57,87	5,01	0	500	1,50	410,46	410,17	412,20	410,86	1,36	267,8	0,00	0,00	1,54	257,56	21,47	0,40	96
210AZR06	33,63	5,06	0	600	1,50	410,17	410,00	413,70	410,57	1,54	435,5	0,00	0,00	1,41	296,94	21,74	0,40	68
210AZR07	58,96	4,92	0	600	1,50	410,00	409,71	413,62	410,44	1,52	429,5	0,00	0,00	1,70	374,03	21,65	0,44	87
210AZR08	46,72	4,92	0	600	1,50	409,71	409,48	413,45	410,14	1,52	429,7	0,00	0,00	2,72	439,55	21,72	0,43	102
210AZR09	27,29	52,03	0	600	1,50	409,48	408,06	411,72	409,71	4,96	1402,3	0,00	0,00	4,41	452,27	21,99	0,23	32
210AZR10	5,31	128,06	0	600	1,50	408,06	407,38	411,15	408,30	7,81	2208,7	0,00	0,00	2,98	452,07	22,07	0,24	20
210AZR20	62,73	5,74	0	400	1,50	408,20	407,84	410,05	408,43	1,26	158,9	0,00	0,00	1,22	94,38	22,16	0,23	60
210AZR21	27,30	5,86	0	500	1,50	407,84	407,68	410,29	408,09	1,48	289,8	0,00	0,00	1,17	123,98	22,58	0,25	43
210AZR21 a	14,49	5,52	0	500	1,50	407,68	407,60	410,63	407,97	1,43	281,2	0,00	0,00	1,13	139,05	22,48	0,29	50
210AZR22	32,79	5,79	0	500	1,50	407,60	407,41	410,78	407,91	1,47	288,1	0,00	0,00	1,16	168,30	22,38	0,31	59
210AZR23	5,50	5,46	0	600	1,50	407,41	407,38	411,13	407,79	1,60	452,5	0,00	0,00	0,87	168,16	22,27	0,38	38
210AZR11	26,08	13,42	0	700	1,50	407,38	407,03	411,04	407,78	2,77	1067,4	0,00	0,00	2,64	630,12	22,24	0,40	59
210AZR12	48,94	10,01	0	700	1,50	407,03	406,54	410,18	407,46	2,39	921,5	0,00	0,00	3,44	652,87	22,19	0,43	71
210AZR13	45,24	82,66	0	600	1,50	406,54	402,80	408,45	406,80	6,26	1769,8	0,00	0,00	6,15	666,28	22,33	0,26	38
210AZR14	20,18	121,43	0	600	1,50	402,80	400,35	404,70	403,03	7,60	2149,8	0,00	0,00	6,59	666,18	22,47	0,23	31
210AZR14 a	30,06	109,44	0	600	1,50	400,35	397,06	401,89	400,59	7,21	2039,4	0,00	0,00	5,87	665,44	22,53	0,24	33
210AZR15	9,22	771,57	0	300	1,50	397,06	389,95	398,56	397,33	15,33	1083,6	0,00	0,00	10,27	665,15	22,67	0,27	61
210AZR16	47,63	202,40	0	400	1,50	389,95	380,31	391,45	390,20	7,62	957,7	0,00	0,00	8,10	665,30	22,67	0,25	69
210AZR17	124,54	191,03	0	400	1,50	380,31	356,52	381,81	380,56	7,40	929,3	0,00	0,00	7,75	664,73	22,87	0,25	72
210Fiktiv	90,47	99,70	0	500	1,50	356,52	347,50	358,32	356,79	6,12	1202,4	0,00	0,00	5,90	663,60	23,06	0,27	55
210AZR18 _1	108,71	73,87	0	500	1,50	347,50	339,47	349,11	347,79	5,26	1033,6	0,00	0,00	5,22	662,17	23,29	0,29	64
2101AZR2 0	26,65	36,02	0	600	1,50	339,47	338,51	340,85	339,79	4,12	1166,1	0,00	0,00	4,25	662,18	23,35	0,32	57
110ASR01	13,33	60,03	0	300	1,50	361,95	361,15	363,30	362,05	3,41	240,9	0,00	0,00	2,49	57,41	21,01	0,10	24
110ASR02	48,97	113,32	0	300	1,50	361,15	355,60	362,44	361,27	4,70	331,9	0,00	0,00	3,83	106,73	20,14	0,12	32
110ASR04 a	20,70	100,49	0	300	1,50	355,60	353,52	357,41	355,73	4,42	312,3	0,00	0,00	4,13	126,70	20,26	0,13	41
110ASR04	15,85	109,18	0	300	1,50	353,52	351,79	355,19	353,66	4,61	325,7	0,00	0,00	4,15	137,15	20,29	0,14	42
110ASR05	12,29	87,87	0	300	1,50	351,79	350,71	353,35	351,94	4,13	291,9	0,00	0,00	3,05	138,36	20,35	0,15	47
110ASR14	24,69	8,51	0	300	1,50	352,99	352,78	354,84	354,26	1,28	90,3	0,00	0,00	1,25	88,53	21,41	1,27	139
110ASR15	39,99	13,25	0	300	1,50	352,78	352,25	355,01	353,85	1,60	112,8	0,00	0,00	1,85	130,47	21,35	1,07	154
110ASR17	31,37	32,84	0	300	1,50	352,25	351,22	353,98	352,60	2,52	177,9	0,00	0,00	2,79	189,90	21,26	0,35	107
110ASR17 b	7,98	63,92	0	300	1,50	351,22	350,71	352,80	351,42	3,52	248,6	0,00	0,00	3,63	190,50	21,38	0,20	77
110ASR06	25,94	77,88	0	400	1,50	350,71	348,69	352,35	350,93	4,68	588,4	0,00	0,00	4,84	342,50	20,67	0,22	58
110ASR08	16,38	92,80	0	400	1,50	348,69	347,17	350,75	348,91	5,12	642,8	0,00	0,00	5,08	375,78	20,58	0,22	58
110ASR08 a	34,57	92,86	0	400	1,50	347,17	343,96	349,28	347,41	5,12	643,1	0,00	0,00	5,16	417,57	20,54	0,24	65

Seite 9 von 14

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

Bla	att	2	В
	_	_	_

																	Dia	uzb
Haltung	Rohr-	Sohl-	Profil-	Profil-	kb-	Sohl-	Sohl-	Deckel-	Wsp	vvoll	Qvoll	TW	TW	Max.	Max.	Max.	Max.	Bel.
	länge	ge-	art	Nenn-	Wert	höhe	höhe	höhe	höhe					Wsp	Wsp.	Wsp.	Wsp	grd.
	9.7	fälle		weite		oben	unten	oben	oben						- W			
												v	h	v	Q	Zeit	h	
Nr.	m	0/00		DN	mm	m+NN	m+NN	m+NN	m+NN	m/s	l/s	m/s	m	m/s	I/s	min	m	%
110ASR19	59,75	13,22	0	300	1,50	344,75	343,96	346,64	344,99	1,59	112,7	0,00	0,00	1,72	106,49	20,33	0,24	95
110ASR09	8,45	118,39	0	400	1,50	343,96	342,96	345,76	344,22	5,79	727,2	0,00	0,00	5,59	523,49	20,61	0,26	72
110ASR03	32,85	4,87	0	300	1,50	343,19	343,03	344,88	343,35	0,97	68,2	0,00	0,00	0,51	25,53	20,47	0,16	39
110ASR21	11,05	6,34	0	300	1,50	343,03	342,96	345,36	343,27	1,10	77,9	0,00	0,00	0,40	26,69	20,70	0,24	35
110ASR01 0	26,74	83,02	0	400	1,50	342,96	340,74	345,25	343,26	4,84	607,7	0,00	0,00	5,29	555,13	20,67	0,30	91
110ASR11	23,37	39,36	0	500	1,50	340,74	339,82	343,08	341,06	3,84	753,4	0,00	0,00	4,18	555,85	20,64	0,32	74

Seite 10 von 14

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

Einzugsgebietsdaten

EZG	Gesamt- fläche	Erste zugeord. Haltung	Zweite zugeord. Haltung	BZ	Konst. Schmutz- wasser- zufluss	Konst. Regen- wasser- zufluss	Dach- fläche	Strassen- fläche	Sonstige Fläche	Gefälle	Fließ- länge	Bodenart
Nr	ha				Zuliuss I/s	I/s	ha	ha	ha	%	m	
E00001	0,109	210AZR02		0	0,0	0,0	0,026	0,000	0,000	1,00	16,99	4
E00003	0,252	210AZR06		0	0,0	0,0	0,040	0,000	0,061	1,00	38,38	4
E00007	0,156	210AZR12		0	0,0	0,0	0,017	0,055	0,005	0,40	24,76	4
E00015	0,017	210AZR13		0	0,0	0,0	0,000	0,017	0,000	7,71	10,77	4
E00031	0,009	210AZR21 a		0	0,0	0,0	0,000	0,009	0,000	1,00	0,21	4
E00063	0,032	110ASR0 4a		0	0,0	0,0	0,000	0,032	0,000	1,00	10,24	4
E00109	1,021	110ASR0 1		0	0,0	0,0	0,129	0,000	0,053	3,80	119,88	4
E00108	0,214	110ASR0 1		0	0,0	0,0	0,023	0,000	0,008	9,12	46,47	4
E00107	0,216	110ASR0 2		0	0,0	0,0	0,017	0,000	0,016	1,00	47,52	4
E00106	0,210	110ASR0 4a		0	0,0	0,0	0,033	0,000	0,022	1,00	61,71	4
E00105	0,425	110ASR1 9		0	0,0	0,0	0,072	0,015	0,025	7,92	70,46	4
E00104	0,147	110ASR1 9		0	0,0	0,0	0,041	0,023	0,029	1,00	64,00	4
E00103	0,270	110ASR1 9		0	0,0	0,0	0,133	0,000	0,092	1,00	27,73	4
E00102	0,035	110ASR0 10		0	0,0	0,0	0,004	0,000	0,000	1,00	13,84	4
E00101	0,070	110ASR0 3		0	0,0	0,0	0,021	0,000	0,009	1,00	12,25	4
E00100	0,109	110ASR0 3		0	0,0	0,0	0,026	0,000	0,042	6,30	25,08	4
E00099	0,239	110ASR0 2		0	0,0	0,0	0,091	0,000	0,045	4,96	34,70	4
E00098	0,240	110ASR1 5		0	0,0	0,0	0,055	0,000	0,026	11,82	43,21	4
E00097	0,287	110ASR1 4		0	0,0	0,0	0,084	0,000	0,056	7,82	31,44	4
E00096	0,824	110ASR1 4		0	0,0	0,0	0,330	0,052	0,216	1,00	98,15	4
E00095	0,084	110ASR1 5		0	0,0	0,0	0,026	0,000	0,009	1,00	34,90	4
E00094	0,147	110ASR1 5		0	0,0	0,0	0,021	0,000	0,015	1,00	26,26	4
E00093	0,186	110ASR0 8a		0	0,0	0,0	0,084	0,020	0,000	3,84	33,34	4
E00092	0,170	110ASR0 1		0	0,0	0,0	0,000	0,170	0,000	5,63	92,83	4
E00091	0,015	110ASR1 4		0	0,0	0,0	0,000	0,015	0,000	1,00	1,53	4

Seite 11 von 14

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

EZG		Erste zugeord. Haltung	Zweite zugeord. Haltung	BZ	Konst. Schmutz- wasser- zufluss	Konst. Regen- wasser- zufluss	Dach- fläche	Strassen- fläche	Sonstige Fläche	Gefälle	Fließ- länge	Bodenart
Nr E00090	0.062	110ASR1		0	l/s	I/s	ha	ha	ha	7 24	m o o s	
E00090	0,062	5		U	0,0	0,0	0,000	0,062	0,000	7,34	8,85	4
E00089	0,079	110ASR1 5		0	0,0	0,0	0,011	0,000	0,003	8,72	24,20	4
E00088	0,038	110ASR1 7		0	0,0	0,0	0,007	0,000	0,000	17,74	10,54	4
E00087	0,028	110ASR1 7		0	0,0	0,0	0,000	0,028	0,000	1,00	1,35	4
E00086	0,075	110ASR1 7		0	0,0	0,0	0,028	0,000	0,027	1,00	30,45	4
E00085	0,083	110ASR0 6		0	0,0	0,0	0,065	0,000	0,000	1,00	26,61	4
E00084	0,005	110ASR1 7b		0	0,0	0,0	0,000	0,005	0,000	2,81	1,07	4
E00083	0,008	110ASR0 5		0	0,0	0,0	0,000	0,008	0,000	8,54	0,82	4
E00082	0,035	110ASR0 6		0	0,0	0,0	0,013	0,000	0,000	14,78	9,34	4
E00081	0,061	110ASR0 4		0	0,0	0,0	0,012	0,000	0,002	24,42	19,09	4
E00080	0,010	110ASR0 4		0	0,0	0,0	0,000	0,010	0,000	1,00	0,92	4
E00079	0,035	110ASR0 4		0	0,0	0,0	0,015	0,000	0,000	3,63	14,33	4
E00078	0,038	110ASR0 6		0	0,0	0,0	0,000	0,000	0,000	1,00	16,11	4
E00077	0,016	110ASR0 6		0	0,0	0,0	0,000	0,016	0,000	1,00	0,20	4
E00076	0,190	110ASR0 8		0	0,0	0,0	0,058	0,000	0,042	7,47	42,84	4
E00075	0,052	110ASR0 8		0	0,0	0,0	0,029	0,000	0,000	1,00	20,52	4
E00074	0,025	110ASR0 8		0	0,0	0,0	0,000	0,025	0,000	14,08	6,75	4
E00073	0,077	110ASR0 8a		0	0,0	0,0	0,052	0,000	0,015	1,00	18,99	4
E00072	0,037	110ASR0 8a		0	0,0	0,0	0,000	0,037	0,000	1,00	1,47	4
E00071	0,036	110ASR1 9		0	0,0	0,0	0,000	0,036	0,000	1,35	58,72	4
E00070	0,023	110ASR0 10		0	0,0	0,0	0,000	0,023	0,000	1,00	1,32	4
E00069	0,008	110ASR2 1		0	0,0	0,0	0,000	0,008	0,000	1,00	0,81	4
E00068	0,018	110ASR0 3		0	0,0	0,0	0,000	0,018	0,000	1,00	0,43	4
E00067	0,005	110ASR0 3		0	0,0	0,0	0,000	0,005	0,000	1,00	21,34	4

Seite 12 von 14

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

EZG	Gesamt- fläche		Zweite zugeord.	BZ	Konst. Schmutz-	Konst. Regen-	Dach- fläche	Strassen- fläche	Sonstige Fläche	Gefälle	Fließ- länge	Bodenart
		Haltung	Haltung		wasser-	wasser-						
Nr	ha				zufluss l/s	zufluss l/s	ha	ha	ha	%	m	
E00066	0,003	110ASR1		0	0,0	0,0	0,000	0,003	0,000	6,22	9,48	4
E00065	0,086	1 110ASR0 4a		0	0,0	0,0	0,031	0,000	0,010	22,97	18,67	4
E00062	0,050			0	0,0	0,0	0,000	0,050	0,000	1,00	6,65	4
E00064	0,081	110ASR0 2		0	0,0	0,0	0,000	0,081	0,000	12,87	11,97	4
E00061	0,045	110ASR1 4		0	0,0	0,0	0,000	0,045	0,000	0,24	45,63	4
E00060	0,318	210AZR20		0	0,0	0,0	0,022	0,000	0,002	0,75	71,61	4
E00059	0,692	210AZR20		0	0,0	0,0	0,168	0,021	0,137	0,86	55,61	4
E00058	0,362	210AZR21		0	0,0	0,0	0,104	0,065	0,033	0,23	63,95	4
E00057	0,154	210AZR21 a		0	0,0	0,0	0,047	0,035	0,007	1,00	63,21	4
E00056	0,240	210AZR12		0	0,0	0,0	0,019	0,004	0,011	1,37	52,75	4
E00055	0,136	210AZR20		0	0,0	0,0	0,014	0,000	0,011	1,00	55,96	4
E00054	0,148	210AZR13		0	0,0	0,0	0,066	0,003	0,023	4,98	35,17	4
E00053	0,289	210AZR08		0	0,0	0,0	0,086	0,006	0,076	1,00	31,79	4
E00052	0,325	210AZR07		0	0,0	0,0	0,157	0,000	0,144	1,00	33,33	4
E00051	0,256	210AZR06		0	0,0	0,0	0,051	0,000	0,038	1,17	39,29	4
E00050	0,398	210AZR05		0	0,0	0,0	0,062	0,000	0,048	3,28	40,28	4
E00049	0,595	210AZR05		0	0,0	0,0	0,280	0,082	0,117	1,00	55,65	4
E00048	0,294	210AZR04		0	0,0	0,0	0,031	0,000	0,000	3,77	46,69	4
E00047	0,354	210AZR02		0	0,0	0,0	0,030	0,000	0,000	1,00	48,08	4
E00046	0,358	210AZR03		0	0,0	0,0	0,049	0,000	0,064	3,54	36,48	4
E00045	0,559	210AZR02		0	0,0	0,0	0,144	0,043	0,108	0,32	58,67	4
E00044	0,312	210AZR01		0	0,0	0,0	0,048	0,000	0,086	0,22	40,63	4
E00043	0,233	210AZR01		0	0,0	0,0	0,035	0,000	0,007	2,02	30,12	4
E00042	0,432	210AZR01		0	0,0	0,0	0,042	0,000	0,000	1,00	57,27	4
E00041	0,212	210AZR01		0	0,0	0,0	0,016	0,000	0,003	1,00	67,88	4
E00040	0,037	210AZR01		0	0,0	0,0	0,000	0,027	0,000	1,00	68,77	4
E00039	0,048	210AZR20		0	0,0	0,0	0,000	0,000	0,000	1,11	79,87	4
E00038	0,035	210AZR08		0	0,0	0,0	0,000	0,035	0,000	0,19	98,39	4
E00037	0,039	210AZR07		0	0,0	0,0	0,000	0,020	0,000	1,00	84,70	4
E00036	0,040	210AZR05		0	0,0	0,0	0,000	0,040	0,000	1,00	1,20	4
E00035	0,078	210AZR05		0	0,0	0,0	0,000	0,078	0,000	1,00	66,66	4
E00034	0,020	210AZR20		0	0,0	0,0	0,000	0,020	0,000	1,00	44,31	4
E00033	0,037	210AZR20		0	0,0	0,0	0,000	0,037	0,000	1,00	0,96	4
E00030	0,019	210AZR22		0	0,0	0,0	0,000	0,019	0,000	3,79	0,53	4
E00032	0,018	210AZR21		0	0,0	0,0	0,000	0,018	0,000	1,00	0,72	4
E00029	0,004	210AZR23		0	0,0	0,0	0,000	0,004	0,000	0,66	3,05	4

Seite 13 von 14

Härtfelder Ingenieurtechnologien GmbH $\,^\star\,$ Sebastian-Münster-Straße 6 $\,^\star\,$ 91438 Bad Windsheim

Projekt: Netzteil: Gesamtnetz

EZG	Gesamt-		Zweite	BZ	Konst.	Konst.	Dach-	Strassen-	Sonstige	Gefälle	Fließ-	Bodenart
	fläche	_	zugeord. Haltung		Schmutz- wasser-	Regen- wasser-	fläche	fläche	Fläche		länge	
		rialiturig	riallurig		zufluss	zufluss						
Nr	ha				l/s	l/s	ha	ha	ha	%	m	
E00028	0,031	210AZR08		0	0,0	0,0	0,000	0,031	0,000	1,00	0,07	4
E00027	0,017	210AZR09		0	0,0	0,0	0,000	0,017	0,000	0,99	1,01	4
E00026	0,004	210AZR09		0	0,0	0,0	0,000	0,004	0,000	1,00	8,61	4
E00025	0,040	210AZR07		0	0,0	0,0	0,000	0,040	0,000	1,00	0,23	4
E00024	0,021	210AZR06		0	0,0	0,0	0,000	0,021	0,000	1,00	1,02	4
E00023	0,018	210AZR04		0	0,0	0,0	0,000	0,018	0,000	1,00	0,26	4
E00022	0,021	210AZR03		0	0,0	0,0	0,000	0,021	0,000	1,00	0,28	4
E00021	0,036	210AZR02		0	0,0	0,0	0,000	0,036	0,000	2,07	0,48	4
E00020	0,042	210AZR01		0	0,0	0,0	0,000	0,042	0,000	1,16	0,86	4
E00019	0,018	210AZR01		0	0,0	0,0	0,000	0,018	0,000	1,00	35,14	4
E00018	0,003	210AZR10		0	0,0	0,0	0,000	0,003	0,000	1,05	1,90	4
E00017	0,018	210AZR11		0	0,0	0,0	0,000	0,019	0,000	0,71	1,41	4
E00014	0,438	210AZR20		0	0,0	0,0	0,127	0,000	0,058	0,80	38,73	4
E00016	0,038	210AZR12		0	0,0	0,0	0,000	0,038	0,000	1,00	1,29	4
E00013	0,121	210AZR21		0	0,0	0,0	0,003	0,000	0,020	2,12	43,45	4
E00012	0,113	210AZR21		0	0,0	0,0	0,015	0,000	0,007	3,09	38,21	4
E00011	0,177	210AZR22		0	0,0	0,0	0,040	0,000	0,033	1,00	43,90	4
E00010	0,102	210AZR11		0	0,0	0,0	0,026	0,000	0,025	1,00	22,53	4
E00009	0,199	210AZR22		0	0,0	0,0	0,056	0,000	0,027	2,74	37,92	4
E00006	0,122	210AZR09		0	0,0	0,0	0,031	0,000	0,007	1,00	22,23	4
E00008	0,085	210AZR09		0	0,0	0,0	0,000	0,000	0,000	1,99	21,14	4
E00005	0,315	210AZR08		0	0,0	0,0	0,072	0,000	0,045	3,14	37,89	4
E00002	0,084	210AZR04		0	0,0	0,0	0,000	0,000	0,034	0,73	23,41	4
E00004	0,402	210AZR07		0	0,0	0,0	0,080	0,000	0,068	1,00	43,76	4
Σ	16,300				0,0	0,0	3,515	1,733	2,067			

Seite 14 von 14

Anlage 5: Flächenermittlung nach DWA-A 117

<u>Altselingsbach</u>

	Flächenermittlur	ng Altselin	gsbach			
Flächen	Art der Befestigung	A _{E,i} [ha]	Ψ _m	A _u [ha]	Einleit- stelle	Gewässer
Dachfläche	Ziegel	1,386	0,90	1,25		
Straße, Hoffläche	Asphalt, fugenloser Beton	0,787	0,90	0,71		
Hoffläche	Pflasterfläche	0,694	0,70	0,49		
sonstige Flächen	Schotterflächen	0,064	0,30	0,02		
Grünfläche	flaches Gelände	2,884	0,10	0,29	E1	Selingsbach
Dachfläche, Prognose	Ziegel	0,125	0,90	0,11		0
Hoffläche, Prognose	Pflasterfläche	0,042	0,7	0,03		
Grünfläche, Prognose	flaches Gelände	0,25	0,1	0,03		
	Σ=	6,232	0,468	2,916		
Prognosefläche						
Wohngebiet GRZ = 0,40	Flächenanteil					
Dach	0,3	0,12501				
Hof	0,1	0,04167				
Garten	0,6	0,25002				
Σ	1	0,4167				

Altziegenrück

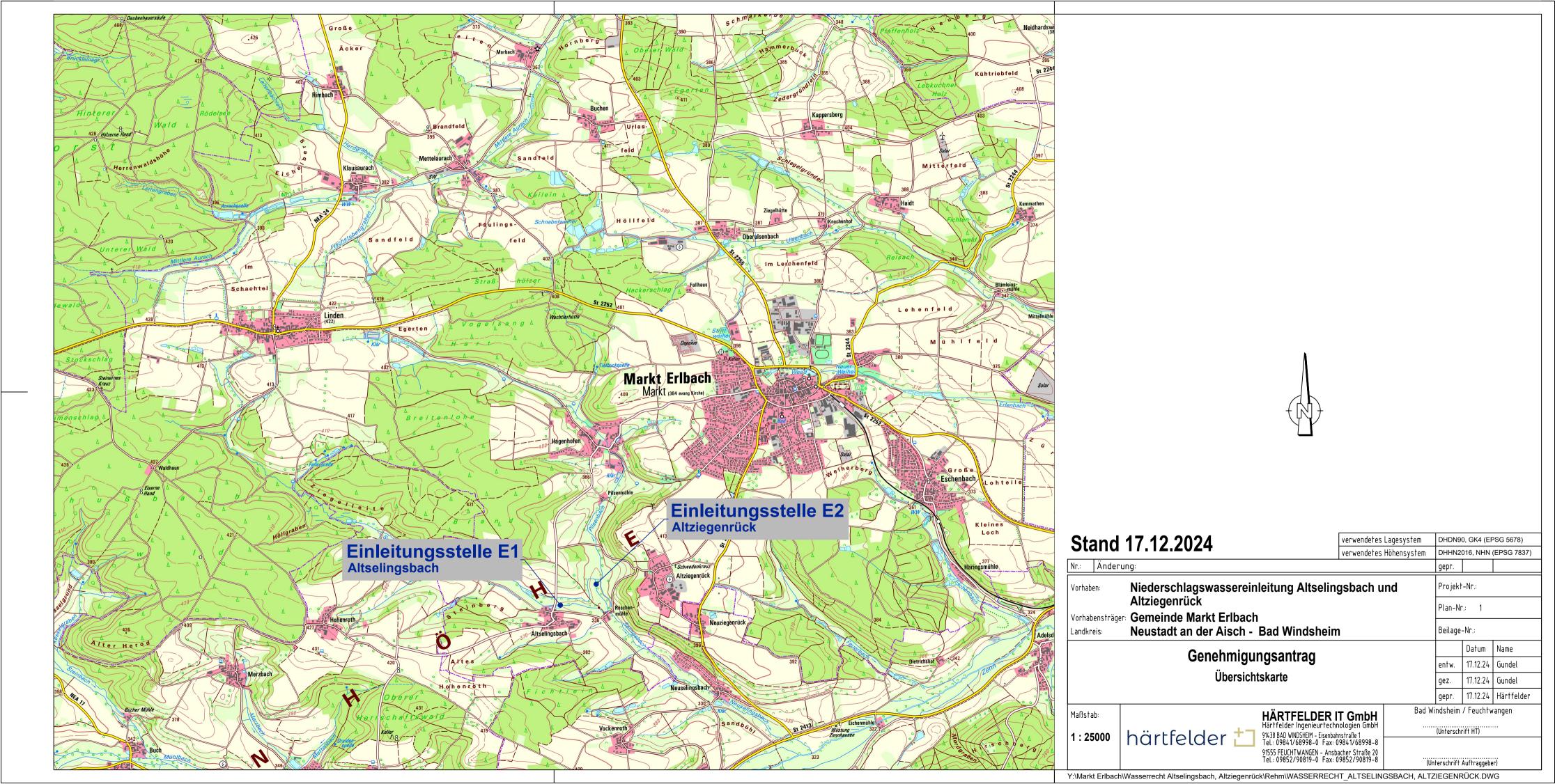
Aitziegenruck						
	Flächenermittlu	ng Altzieg	enrück			
Flächen	Art der Befestigung	A _{E,i} [ha]	Ψ _m [-]	A _u [ha]	Einleit- stelle	Gewässer
Dachfläche	Ziegel	1,895	0,90	1,71		
Straße, Hoffläche	Asphalt, fugenloser Beton	1,019	0,90	0,92		
Hoffläche	Pflasterfläche	1,269	0,70	0,89		
sonstige Flächen	Schotterflächen	0,163	0,30	0,05		
Grünfläche	flaches Gelände	5,196	0,10	0,52	E2	Pilsenbach
Dachfläche, Prognose	Ziegel	0,113	0,90	0,10		
Hoffläche, Prognose	Pflasterfläche	0,038	0,7	0,03		
Grünfläche, Prognose	flaches Gelände	0,226	0,1	0,02		
	Σ=	9,918	0,426	4,230		
<u>Prognosefläche</u>						
Wohngebiet GRZ = 0,40	Flächenanteil					
Dach	0,3	0,11292				
Hof	0,1	0,03764				
Garten	0,6	0,22584				
Σ	1	0,3764				

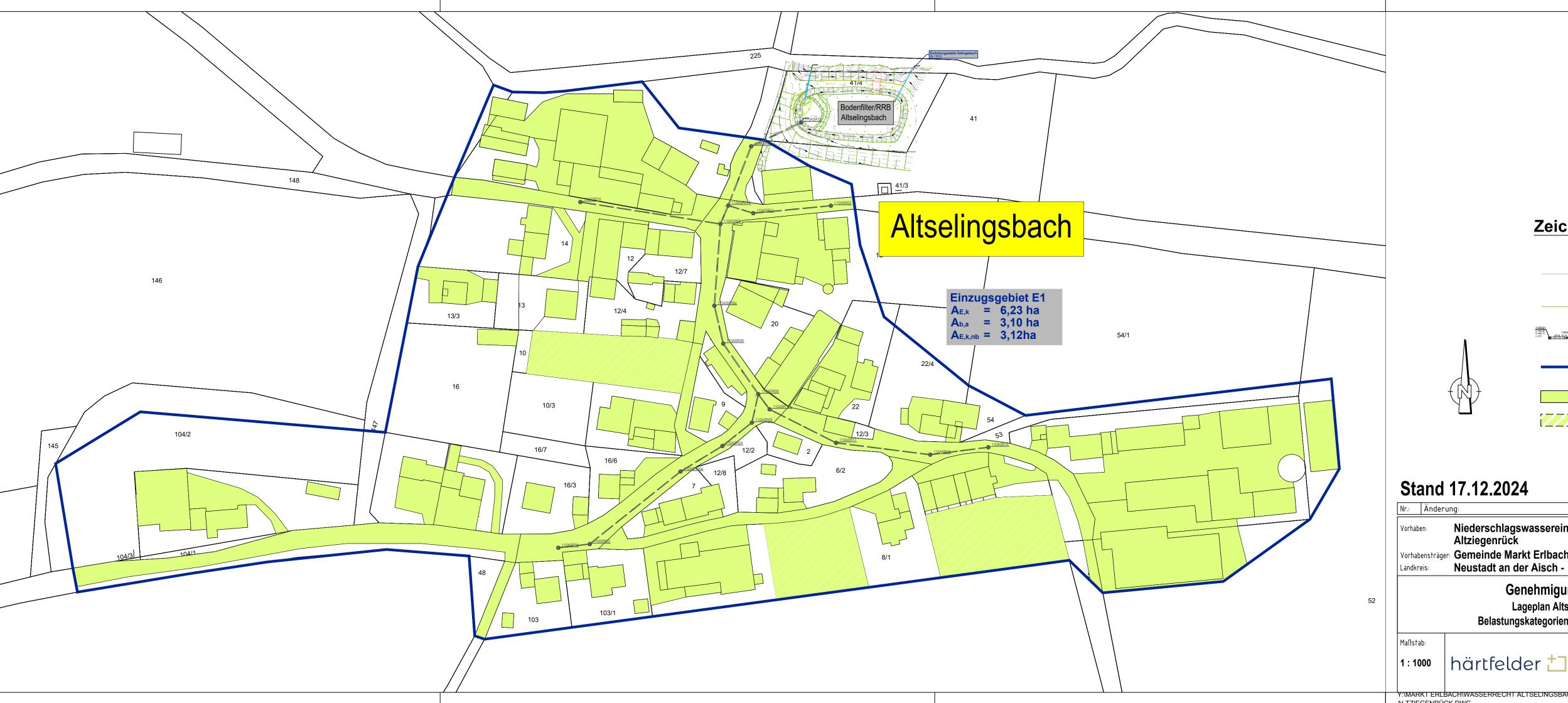
Anlage 6: Bemessung der Regenwasserrückhaltung nach DWA-A117

<u>Altselingsbach</u>

Härtfelder IT	GmbH								
Projekt:	Wasserrecht A	ltselingsbach/Alt	ziegenrück				Datum:	13.12.2024	
Becken:	Bodenfilter/RF	RB Altselingsbach							
Bemessung	sgrundlagen								
undurchlässi	ige Fläche	A _u	2,916	ha	Trockenwettera	bfluss	$Q_{T,d,aM}$		I/s
	nermittlung)				Drosselabfluss		Q _{Dr}	35	I/s
Fließzeit	nerimeerang)	t _f	5	min	Zuschlagsfaktor		f _Z	1,2	-
Wiederkehrz	zoit dos	T	2	a	Zusciliagsiaktoi		¹Z	1,2	
			2	d					
Berechnungs	siegens								
RRR erhält	Drosselabfluss	aus vorgelage	rten Entlas	stungsanlagen	(RRR,RÜB oder RÜ)			
Summe der I	Drosselabflüsse	Opey	0	I/s					
		-D11, V							
RRR erhält	Entlastungsab	fluss aus RÜB o	der RÜ (RI	RR ohne eigne	s Einzugsgebiet)				
Drosselabflu	ISS	0 "		I/s	Volumen		V	0	m³
2.0000.00.10		Q _{DR,RÜB}		1/3	voidilleli		V _{RÜB}	U	111
Berechnung	gsergebnisse								
maßgebende	e Dauerstufe	D	60	min	Entleerungsdaue	er	t _E	4,3	h
Regenspend		r-	54,7	I/(s • ha)	Spezifisches Vol		V _s	184,5	m³/h
		r _{D,n}	•	I/(s • ha)					m ³
Drosselabflu		q _{DR,R,u}	12,00		erf. Gesamtvolu		V _{ges}	538	
Abminderun	gsfaktor	f _A	1,000	-	erf. Rückhaltevo	lumen	V _{RRR}	538	m³
Warnunger	1								
	e Warnung vor.								
Berechnung	gsgrundlage								
Dauerstufe		Niederschlags-		Regen-	spez. Speicher-		Rückhalte-		
D		höhe		spende	volumen		volumen		
		[mm]		[l/(s • ha)]	[m³/ha]		[m³]		
5		9,1		303,3	104,9		306		
10		11,8		196,7	133,0		388		
15		13,5		150,0	149,0		435		
20		14,7		122,5	159,1		464		
30		16,5		91,7	172,1		502		
45		18,3		67,8	180,8		528		
60		19,7		54,7	184,5		538		
90		21,8		40,4	184,0		537		
120		23,4		32,5	177,1		517		
180		25,8		23,9	154,2		450		
240 360		27,6		19,2	124,4		363		
		30,4		14,1	54,4		159		

<u>Altziegenrück</u>


MILLICHEN									
Bemessur	ng Regenrü	ckhalteraum r	nach DW	A-A117					
Härtfelder IT	GmbH								
Projekt:		Altselingsbach/Al		1			Datum:	13.12.2024	
Becken:	Bodenfilter/R	RB Altziegenrück							
Bemessung	sgrundlagen								
undurchlässi		A _u	4,23	ha	Trockenwettera	hfluss	$Q_{T,d,aM}$		I/s
		~u	7,23	iid		511433			-
	nermittlung)				Drosselabfluss		Q _{Dr}	60	I/s
Fließzeit		t _f	5	min	Zuschlagsfaktor		f _Z	1,15	-
Wiederkehrz		Т	5	a					
Berechnungs	sregens								
RRR erhält	Drosselabflus	s aus vorgelage	rten Entla	stungsanlagen	ı (RRR,RÜB oder RÜ)			
	Drosselabflüsse) I/s					
	, , , , , , , , , , , , , , , , , , , ,	→ CDR,v		, 1, 3					
RRR erhält	Entlastungsal	ofluss aus RÜB o	der RÜ (R	RR ohne eigne	es Einzugsgebiet)				
Drosselabflu	_		•						2
Drosserabilu	155	Q _{DR,RÜB}		I/s	Volumen		V _{RÜB}	0	m³
Berechnung	gsergebnisse								
maßgebende	Dauerstufe	D	90	min	Entleerungsdaue	er	t _E	4,5	h
Regenspend		r _{D,n}	51,1	I/(s • ha)	Spezifisches Vol		V _s	229,2	m³/ha
Drosselabflu			14,18	I/(s • ha)	erf. Gesamtvolu		V _{ges}	970	m³
		q _{DR,R,u}							
Abminderun	gstaktor	f _A	1,000	-	erf. Rückhaltevo	lumen	V _{RRR}	970	m³
Warnunger	1								
	e Warnung vor.								
Berechnung	gsgrundlage								
Dauerstufe		Niederschlags-		Regen-	spez. Speicher-		Rückhalte-		
D		höhe		spende	volumen		volumen		
		[mm]		[I/(s • ha)]	[m³/ha]		[m³]		
5		11,5		383,3	127,3		539		
10		15,0		250,0	162,7		689		
15		17,1		190,0	182,0		770		
20		18,6		155,0	194,3		822		
30		20,9		116,1	211,0		893		
45		23,2		85,9	222,7		942		
60 90		25,0 27,6		69,4 51,1	228,6 229,2		967 970		
120		27,6		41,1	222,9		943		
180		32,6		30,2	198,9		842		
240		34,9		24,2	165,9		702		
360		38,4		17,8	89,8		380		
540		42,2		13,0	0,0		0		



Anlage 5: Zusammenstellung der Einleitungen

aus der Kanalisation in die Gewässer von Regenüberlaufbauwerken bei Mischverfahren und Regenwasserauslässen bei Trennverfahren

sser	Bemerkung	11			
Gewässer	Name Einleitungs- stelle Nieder-schlags- gebiet F _N (km²)	10	Selingsbach	Selingsbach	
Entlastungs- oder Einleitungskanal	DN (mm) Gefälle J _S Q _{RÜ} (I/S) Q _{VOII} (I/S)	6	DN 250 Gefälle unbekannt	DN 250 Gefälle unbekannt	
	Qkrit (I/s)	8	-		
rkmale	Tro- cken- wetter- abfluss (I/s)	7			
Konstruktions- und Bemessungsmerkmale des Regenüberlaufbauwerks	Weiterführender Schmutzwasserka- nal (Drossel) DN (mm) Gefälle J _s Drossellänge (m)	9	1		
onstruktions- on des Rege	Schwellen- höhe (m) Schwellen- länge (m)	5			
¥	Zulauf DN (mm) Gefälle J _S Q _{voll} (I/S)	4			
sbereich	Ortsteile, Lage Fläche des Einzugsge- bietes (ha) Zum Abfluß beitra- gende Fläche Ared (ha)	3	Altselingsbach AE=6,23 Ared=2,916	Altziegenrück AE=9,92 Ared=4,23	
Entwässerungsbereich	Bezeich- nung	2	E1 Altselings- bach	E2 Altziegen- rück	
ш	Lfd. Nr. der Einlei- tungs-stelle	1	1	2	

Zeichenerklärung:

Digitale Flurkarte (DFK) Quelle: Geobasisdaten © Bayerische Vermessungs-verwaltung, www.geodaten.bayern.de

Bestehendes Gelände

Bestehender Regenwasserkanal

Fläche der Belastungskategorie I nach DWA-A 102-2

Einzugsgebiet Einleitungsstelle E1

Fläche der Belastungskategorie I nach DWA-A 102-2, Prognosefläche

Stand 17.12.2024

DHHN2016, NHN (EPSG 7837) verwendetes Höhensystem Niederschlagswassereinleitung Altselingsbach und Altziegenrück Projekt-Nr.: Plan-Nr.: 2

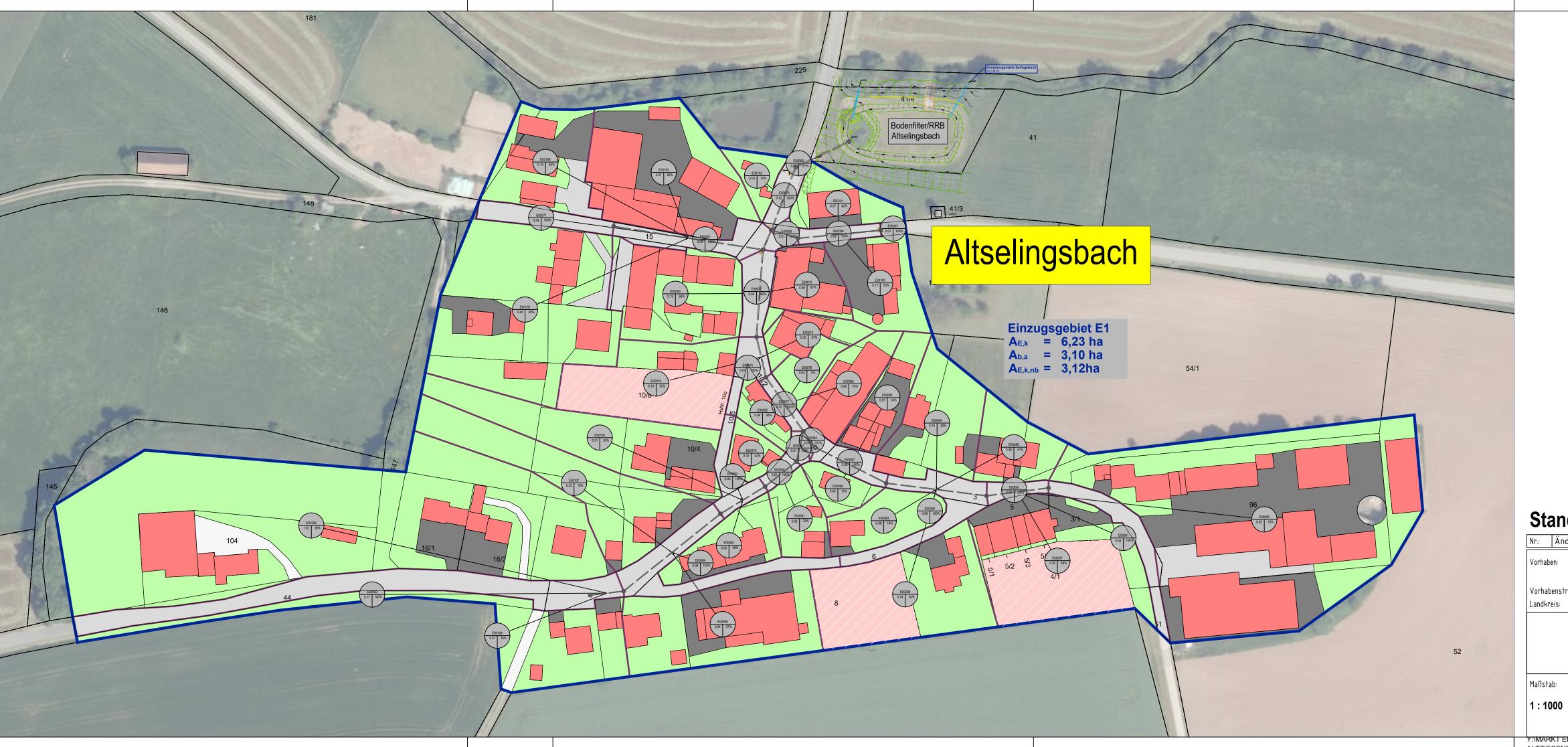
Vorhabensträger: Gemeinde Markt Erlbach Neustadt an der Aisch - Bad Windsheim

> Genehmigungsantrag Lageplan Altselingsbach Belastungskategorien nach DWA-A 102-2

HÄRTFELDER IT GmbH
Härtfelder Ingenieurtechnologien GmbH
91438 BAD WINDSHEIM - Eisenbahnstraße 1
Tel.: 09841/68998-0 Fax: 09841/68998-8
91555 FEUCHTWANGEN - Ansbacher Straße 20
Tel.: 09852/90819-0 Fax: 09852/90819-8

gepr. 17.12.24 Härtfelder Bad Windsheim / Feuchtwangen (Unterschrift HT)

verwendetes Lagesystem DHDN90, GK4 (EPSG 5678)


Beilage-Nr.:

Datum Name

entw. 17.12.24 Gundel

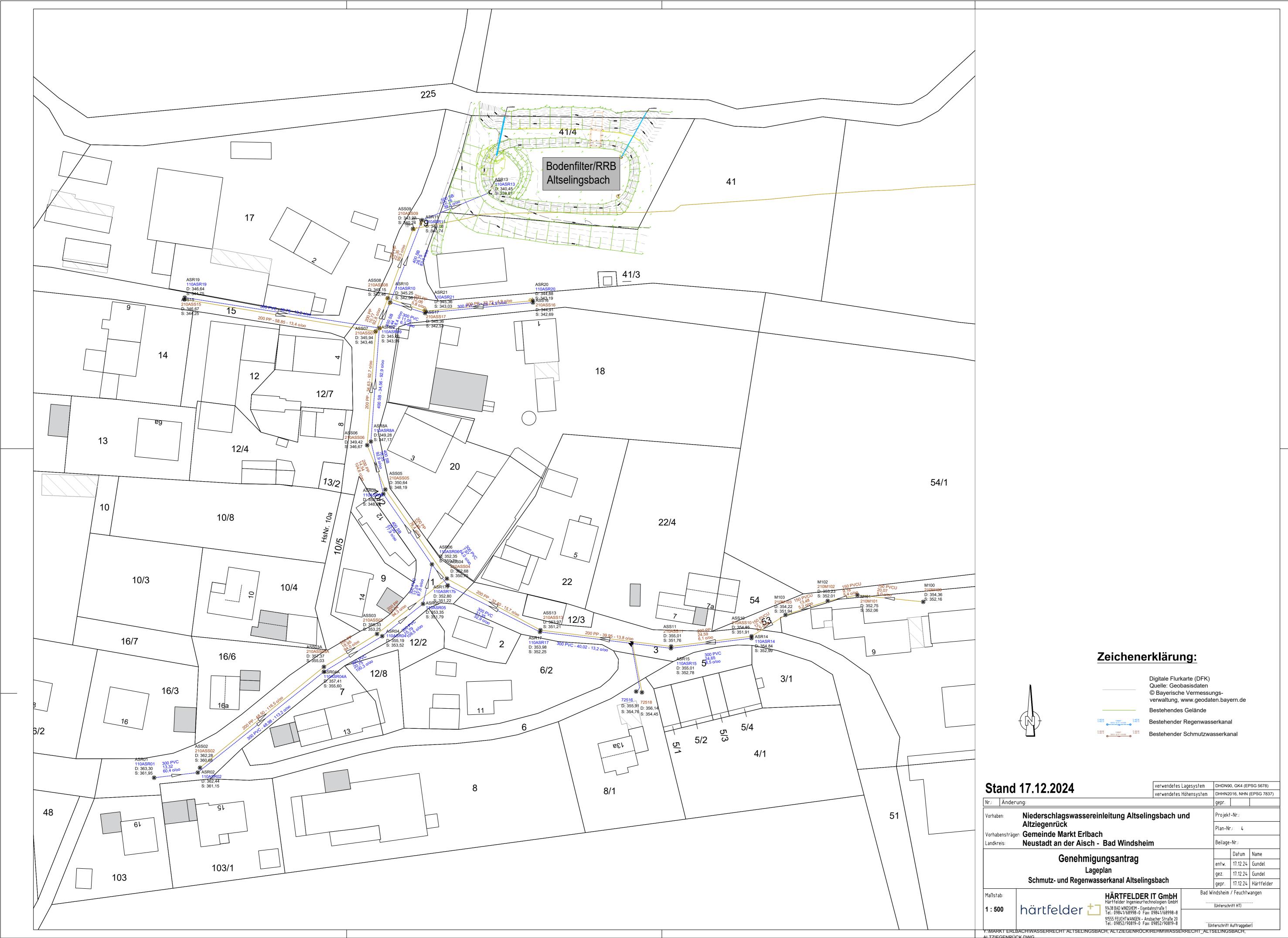
gez. 17.12.24 Gundel

(Unterschrift Auftraggeber)

Zeichenerklärung:

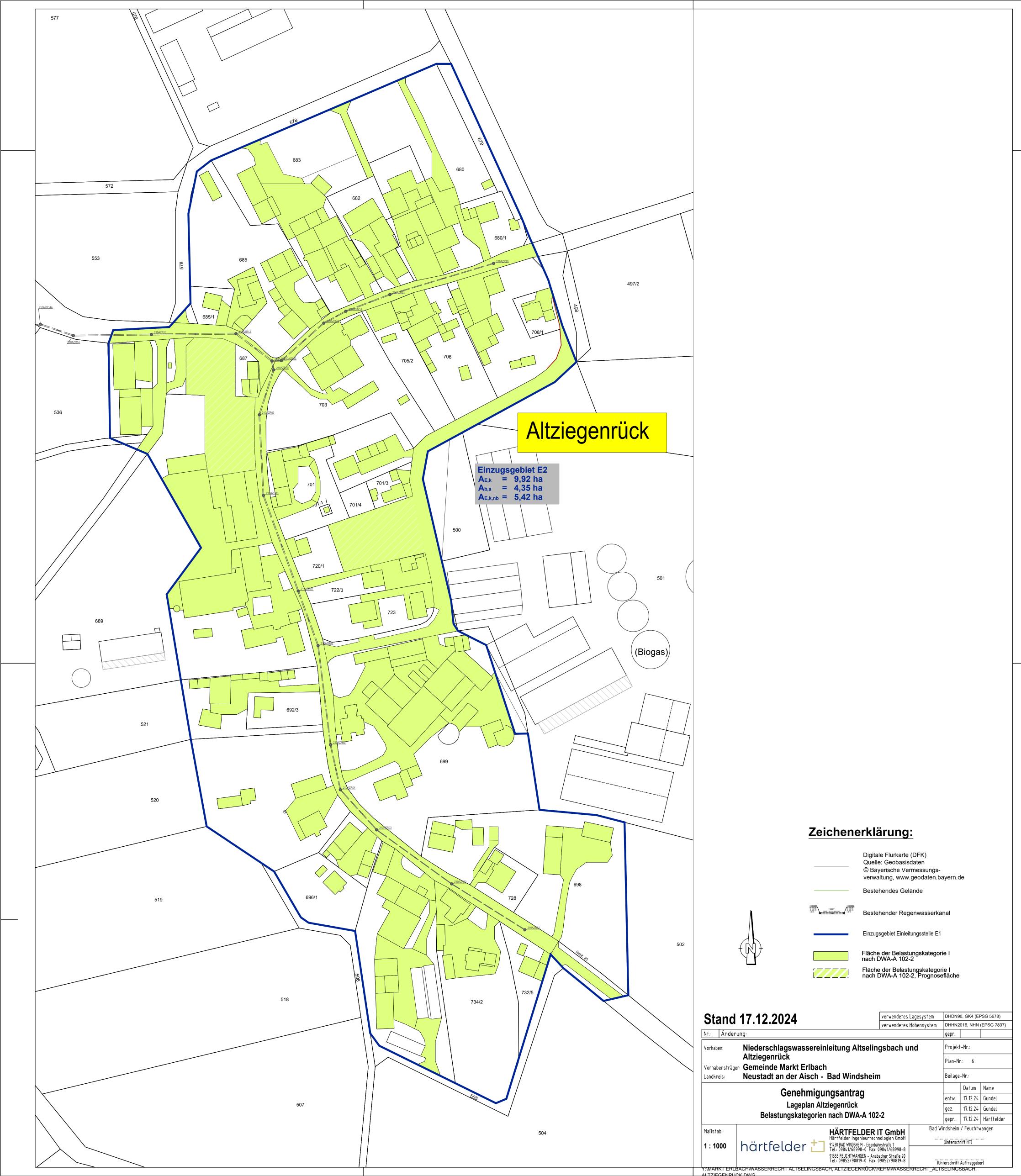
Digitale Flurkarte (DFK) Quelle: Geobasisdaten © Bayerische Vermessungs-verwaltung, www.geodaten.bayern.de Bestehendes Gelände Einzugsgebiet Einleitungsstelle E1 Teileinzugsgebiet Kanalhaltung Gebietsnummer Fläche [ha] / Befestigungsgrad Pflasterfläche Asphalt-/Betonfläche Schotterfläche Dachfläche Baulücke, Neubaugebiet Grünfläche

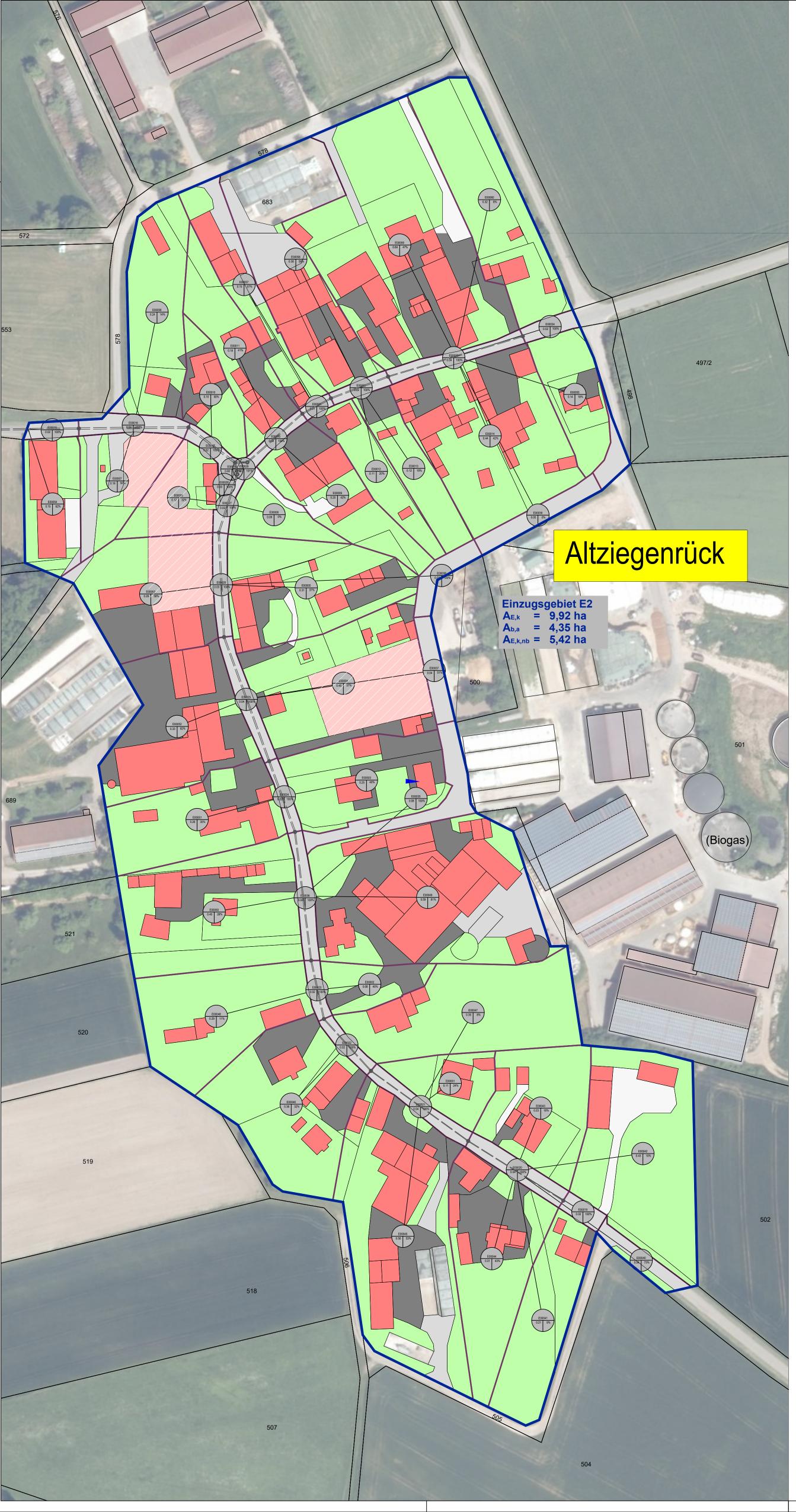
Stand 17.12.2024

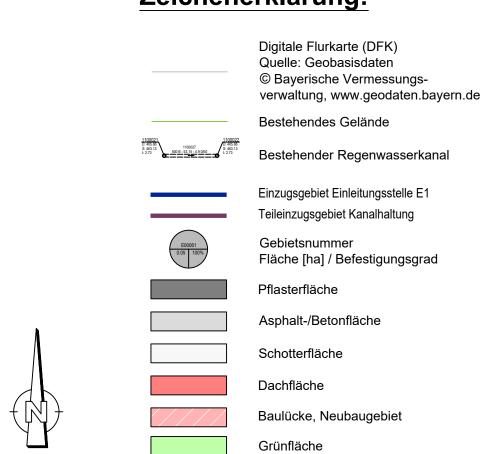

tand	17.12.2024	verwendetes	Lagesystem	DHDN9	0, GK4 (EF	PSG 5678)
lanu	17.12.2027	verwendetes	Höhensystem	DHHN2	016, NHN	(EPSG 7837)
Änderu	ng:			gepr.		
aben:	Niederschlagswassereinleitung Altseling	gsbach u	nd	Projekt	-Nr.:	
nahensträder	Altziegenrück Gemeinde Markt Erlbach			Plan-Nr	r.: 3	
lkreis:	Neustadt an der Aisch - Bad Windsheim	1		Beilage	-Nr.:	
	Ganahmigungsantrag				Datum	Name
	Genehmigungsantrag			entw.	17.12.24	Gundel
	Lageplan Altselingsbach			gez.	17.12.24	Gundel
	Kanaleinzugsgebiete und Flächeneinteilu	ing		gepr.	17.12.24	Härtfelder
stab:	HÄRTFELDER I		Bad W	indsheim	/ Feuchtw	rangen

1:1000 | härtfelder 🗀

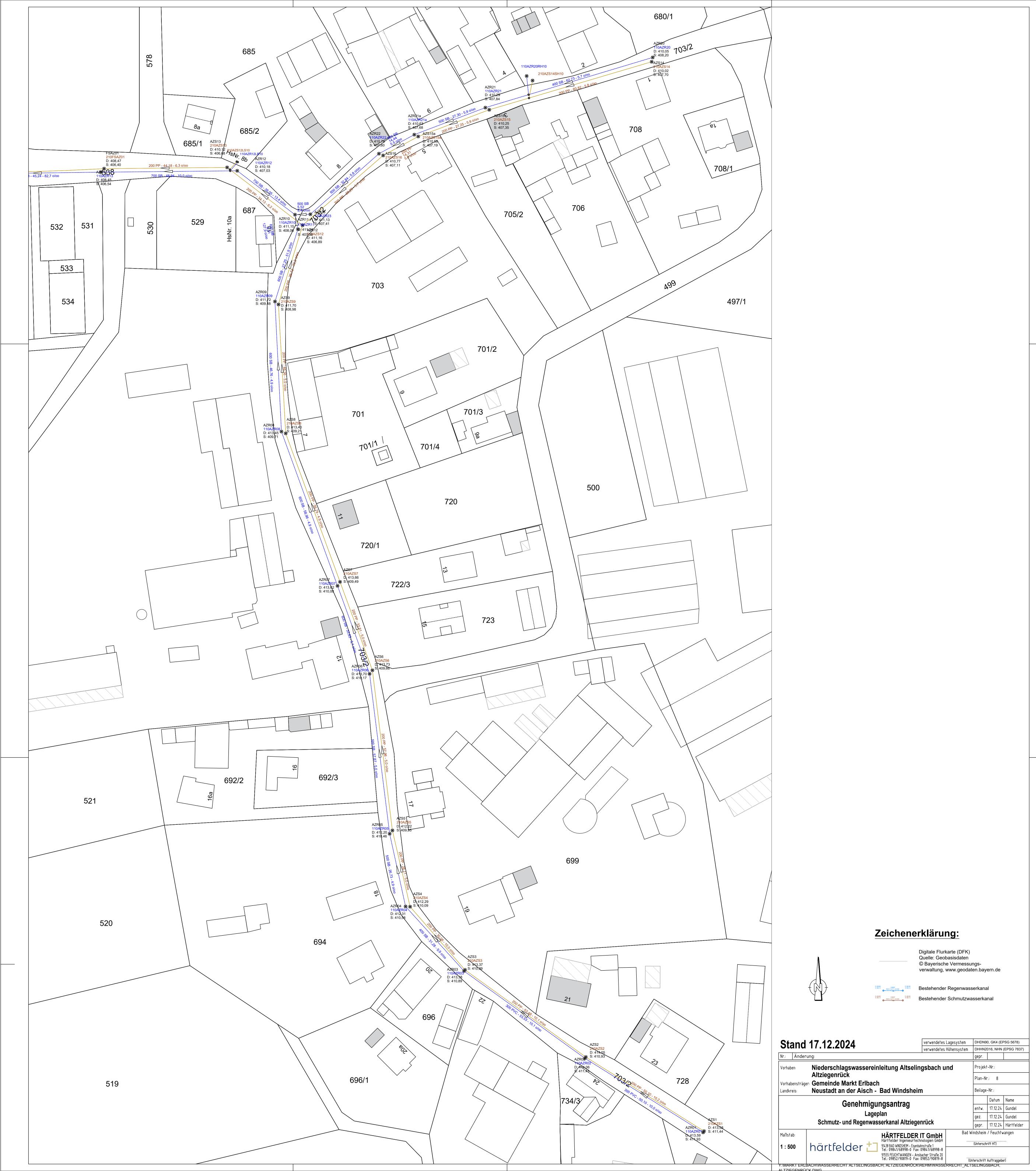
91555 FEUCHTWANGEN - Ansbacher Straße 20 Tel.: 09852/90819-0 Fax: 09852/90819-8

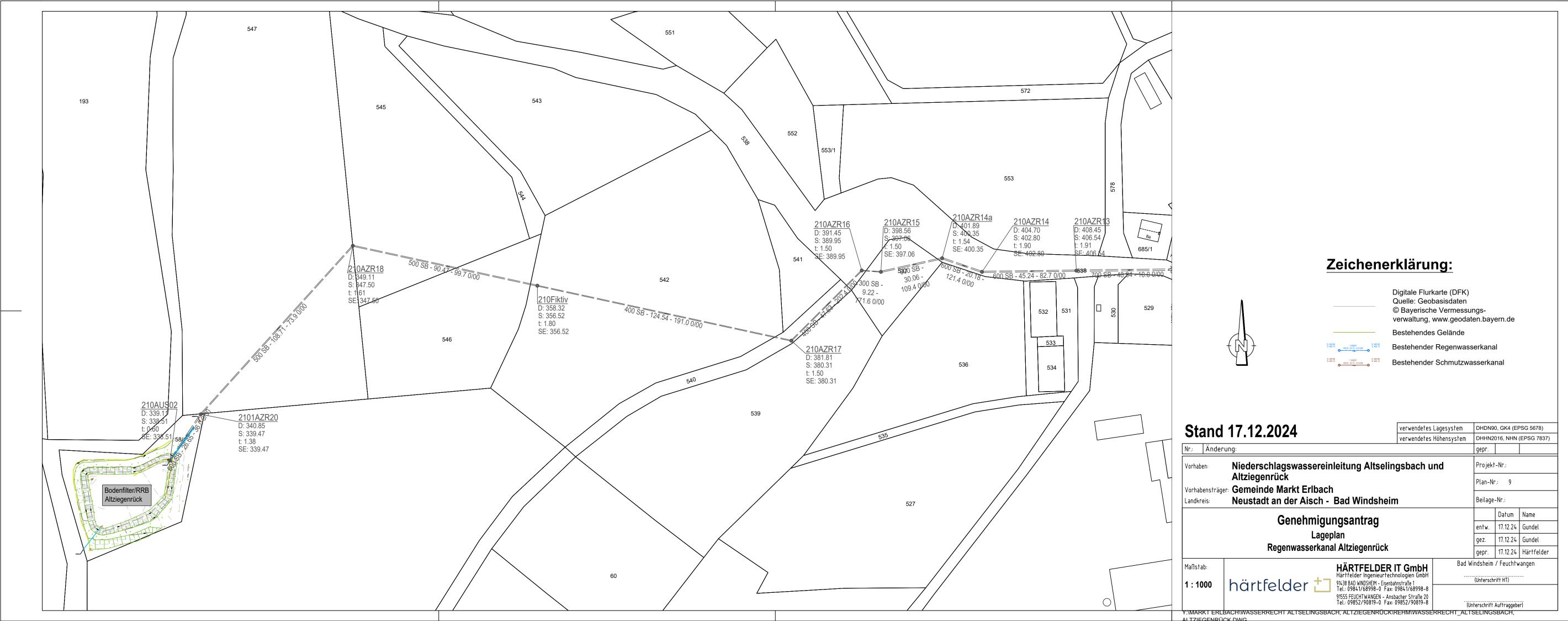

(Unterschrift Auftraggeber)


(Unterschrift HT)


Längsschnitt A-A Regenrückhaltebecken/Bodenfilter Altselingsbach Notüberlauf (Dammscharte) Zulauf WSP (V_N) 340,24 ▼ WSP (V_N) 340,24 340,31 Dammscharte mit _ Dammscharte mit Böschungspflaster befestigt Zulaufkanal SB DN 500 - 39,3 ‰ ¯ _ Zulaufbereich mit Böschungspflaster befestigt Einleitungsstelle E1 Selingsbach QDr = 35 l/s 225 Selingsbach Auslass E01 D: 338.82 **t: 0.25 bestehende Dammscharte Böschungspflaster in Beton Längsschnitt B-B Notüberlauf Altselingsbach Zeichenerklärung: Digitale Flurkarte (DFK) Quelle: Geobasisdaten © Bayerische Vermessungs-verwaltung, www.geodaten.bayern.de RRB Altselingsbach Verf: 538 m³ Sohle: 339,40 Dammkrone: >340,6 WSP (VN): 340,24 Fläche Aufstau: ~800 m² Freibord: 0,35 m QDr: ~35 l/s Q0,max: 754 l/s Notüberlauf: Dammscharte QNotüberlauf: 754 l/s Veiterführen-Bestehendes Gelände 110ASR11 Bestehender Regenwasserkanal D: 343,08 Bestehender Schmutzwasserkanal S: 340.74 Q_{Notüberlauf}: Weiterführen-der Kanal: 110 ASR 13 DN 250 t: 2,34 D: 340.32 S: 339.82 Stand 17.12.2024 verwendetes Lagesystem DHDN90, GK4 (EPSG 5678) verwendetes Höhensystem DHHN2016, NHN (EPSG 7837) t: 0.50 Nr.: Änderung: Niederschlagswassereinleitung Altselingsbach und Altziegenrück D:343.29 S: 340.24 t: 3,05 Vorhabensträger: Gemeinde Markt Erlbach Landkreis: Neustadt an der Aisch - Bad Windsheim Beilage-Nr.: Datum Name entw. 17.12.24 Gundel Genehmigungsantrag . 83.0 0/00 Lageplan/Detailplan gez. 17.12.24 Gundel gepr. 17.12.24 Härtfelder Bad Windsheim / Feuchtwangen Bodenfilter/RRB Altselingsbach HÄRTFELDER IT GmbH Härtfelder Ingenieurtechnologien GmbH 91438 BAD WINDSHEIM - Eisenbahnstraße 1 Tel.: 09841/68998-0 Fax: 09841/68998-8 91555 FEUCHTWANGEN - Ansbacher Straße 20 Tel.: 09852/90819-0 Fax: 09852/90819-8 Maßstab: 1 : 200 1 : 50 (Unterschrift HT) härtfelder i (Unterschrift Auftraggeber)

Y:\Markt Erlbach\Wasserrecht Altselingsbach, Altziegenrück\Rehm\WASSERRECHT_ALTSELINGSBACH, ALTZIEGENRÜCK.DWG




Zeichenerklärung:

Stand	17.12.2024	verwendetes			0, GK4 (EF	
		verwendetes	Höhensystem		016, NHN ((EPSG 7837)
Nr.: Ander	ıng:			gepr.		
Vorhaben:	Niederschlagswassereinleitung Altseling	gsbach u	nd	Projekt	-Nr.:	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Altziegenrück · Gemeinde Markt Erlbach			Plan-Nr	r.: 7	
vornabenstrage Landkreis:	Neustadt an der Aisch - Bad Windsheim			Beilage	-Nr.:	
	Genehmigungsantrag				Datum	Name
				entw.	17.12.24	Gundel
	Lageplan Altziegenrück			gez.	17.12.24	Gundel
	Kanaleinzugsgebiete und Flächeneinteilu	ng		gepr.	17.12.24	Härtfelder
Maßstab:	HÄRTFELDER I	Γ GmbH	Bad W	indsheim	/ Feuchtw	angen
1 : 1000	Härtfelder Ingenieurtechn	ologien GmbH		(Unterschi	rift HT)	•••
1.1000	härtfelder i 91438 BAD WINDSHEIM - Eisenbahr Tel.: 09841/68998-0 Fax: 0' 91555 FEUCHTWANGEN - Ansba Tel.: 09852/90819-0 Fax: 0'	cher Straße 20		tonechnift	 Auftraggebe	

Y:\MARKT ERLBACH\WASSERRECHT ALTSELINGSBACH, ALTZIEGENRÜCK\REHM\WASSERRECHT_ALTSELINGSBACH,

Längsschnitt A-A Regenrückhaltebecken/Bodenfilter Altziegenrück 340,22 340,00 WSP (V_N) 339,55 ▼ WSP (V_N) 339,55 ▼ 338,46 **T** Zulaufkanal SB DN 600 - 36,0 ‰ Zulaufbereich mit Böschungspflaster befestigt [–] 210AUS02 D: 339./11 S: 338/51 t: 0.60

Zeichenerklärung:

Digitale Flurkarte (DFK)
Quelle: Geobasisdaten
© Bayerische Vermessungsverwaltung, www.geodaten.bayern.de

Bestehendes Gelände

Bestehender Regenwasserkanal
Bestehender Schmutzwasserkanal

Stand 17.12.2024

RRB Altziegenrück

Verf: 970 m³

Sohle: 338,45

Dammkrone: >340

WSP (V_N): 339,55

Fläche Aufstau: ~1083 m²

Freibord: 0,35 m

Drossel: Schieber

On: ~60 l/s

>1166 l/s

DN 250

Q_{Notüberlauf}: Weiterführen-

der Kanal:

Änc	lerung:	gepr.			
haben:	·····g·····g······g······g······g······		Projekt-Nr.:		
Altziegenrück habensträger: Gemeinde Markt Erlbach		Plan-Nr.: 10			
dkreis:	Neustadt an der Aisch - Bad Windsheim	Beilage-Nr.:			
	Genehmigungsantrag		Datum	Name	
Lageplan Bodenfilter/RRB Altselingsbach		entw.	17.12.24	Gundel	
		gez.	17.12.24	Gundel	
		дерг.	17.12.24	Härtfelder	

Maßstab:
1: 200
1: 50

härtfelder 🛅

HÄRTFELDER IT GmbH Härtfelder Ingenieurtechnologien GmbH 91438 BAD WINDSHEIM - Eisenbahnstraße 1 Tel.: 09841/68998-0 Fax: 09841/68998-8 91555 FEUCHTWANGEN - Ansbacher Straße 20 Tel.: 09852/90819-0 Fax: 09852/90819-8

verwendetes Lagesystem DHDN90, GK4 (EPSG 5678)
verwendetes Höhensystem DHHN2016, NHN (EPSG 7837)

Y:\Markt Erlbach\Wasserrecht Altselingsbach, Altziegenrück\Rehm\WASSERRECHT_ALTSELINGSBACH, ALTZIEGENRÜCK.DWG

S: 337.52

Einleitungsstelle E2 Selingsbach
Qpr = 60 l/s

Auslass E02 D: 337.77 S: 337.52

t: 0.25